-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
57 lines (51 loc) · 2.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from torch.utils.data import Dataset,DataLoader
import torch
class Normalize(object):
def __init__(self, type = "0-1"): # "0-1","1-1","mean-std"
self.type = type
def __call__(self, seq):
if self.type == "0-1":
seq = (seq-seq.min())/(seq.max()-seq.min())
elif self.type == "1-1":
seq = 2*(seq-seq.min())/(seq.max()-seq.min()) + -1
elif self.type == "mean-std" :
seq = (seq-seq.mean())/seq.std()
elif self.type=='None':
seq=seq
elif self.type=='mean':
seq = seq - seq.mean()
else:
raise NameError('This normalization is not included!')
return seq
class SigDataset(Dataset):
def __init__(self, signal,Normalization):
super(SigDataset,self).__init__()
self.signal=torch.tensor(signal,dtype=torch.float32)
self.transforms = Normalize(Normalization)
def __len__(self):
return len(self.signal)
def __getitem__(self, idx):
self.signal = self.transforms(self.signal)
return self.signal[idx]
def LoadSig(signal,batch_size=32,Normalization='None'):
dataset=SigDataset(signal,Normalization)
print('{} samples found'.format(len(dataset)))
train_iterator=DataLoader(dataset,batch_size,shuffle=False)
return train_iterator
class SigDataset_N(Dataset):
def __init__(self, signal,signal_N,Normalization):
super(SigDataset_N,self).__init__()
self.signal=torch.tensor(signal,dtype=torch.float32)
self.signal_N=torch.tensor(signal_N,dtype=torch.float32)
self.transforms = Normalize(Normalization)
def __len__(self):
return len(self.signal)
def __getitem__(self, idx):
self.signal = self.transforms(self.signal)
self.signal_N = self.transforms(self.signal_N)
return self.signal[idx],self.signal_N[idx]
def LoadSig_N(signal,signal_N,batch_size=32,Normalization='None'):
dataset=SigDataset_N(signal,signal_N,Normalization)
print('{} samples found'.format(len(dataset)))
train_iterator=DataLoader(dataset,batch_size,shuffle=False)
return train_iterator