-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcopy.lua
83 lines (71 loc) · 3.12 KB
/
copy.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
-- This a config for the copy task
local config = {}
-- For conversion to distributions
local distUtils = require 'nc.distUtils'
local f = distUtils.flatDist
-- Name of the algorithm
config.name = "Copy"
-- Number of available registers (excluding the RI)
config.nb_registers = 7
-- Number of instructions this program uses
config.nb_existing_ops = 11
-- Size of the memory tape and largest number addressable
config.memory_size = 15
-- Initial state of the registers
config.registers_init = torch.Tensor{1,0,f,7,0,1,f}
config.registers_init = distUtils.toDistTensor(config.registers_init, config.memory_size)
-- Program
config.nb_states = 8
config.program = {
torch.Tensor{1, 0, 2, 1, 0, 1, 4, f},
torch.Tensor{f, f, 3, 2, f, f, 5, f},
torch.Tensor{1, 2, 6, 6, 0, 1, 6, 6},
torch.Tensor{8, 8,10, 9, 2, 2,10, 0},
}
-- Sample input memory
-- Should output {3, 4, 2} at addresses {6, 7, 8}
config.example_input = torch.zeros(config.memory_size)
config.example_input[1] = 5
config.example_input[2] = 3
config.example_input[3] = 4
config.example_input[4] = 2
config.example_input[5] = 0
config.example_output = config.example_input:clone()
config.example_output[6] = 3
config.example_output[7] = 4
config.example_output[8] = 2
config.example_output[9] = 0
config.example_input = distUtils.toDistTensor(config.example_input, config.memory_size)
config.example_output = distUtils.toDistTensor(config.example_output, config.memory_size)
config.example_loss_mask = torch.ones(config.memory_size, config.memory_size)
config.gen_sample = function()
local list_length = 1 + math.floor(torch.uniform()*(math.floor((config.memory_size-2)/2)-1))
local where_to_write = list_length + 3 + math.floor(torch.uniform()*(config.memory_size-2*list_length-3))
local input = torch.floor(torch.rand(config.memory_size) * (config.memory_size-1))+1
input[1] = where_to_write
input:narrow(1, list_length + 2, config.memory_size - (list_length+1)):fill(0)
local output = input:clone()
output:narrow(1, where_to_write+1, list_length)
:copy(input:narrow(1, 2, list_length))
local loss_mask = torch.zeros(config.memory_size, config.memory_size)
loss_mask:narrow(1, where_to_write+1, list_length):fill(1)
input = distUtils.toDistTensor(input, config.memory_size)
output = distUtils.toDistTensor(output, config.memory_size)
return input, output, loss_mask
end
config.gen_biased_sample = function()
-- This is biased because the length of the list are always the same
-- and the target is always the same.
-- memory-size is odd
local input = torch.floor(torch.rand(config.memory_size) * (config.memory_size-1))+1
input[1] = (config.memory_size+1)/2
input:narrow(1, (config.memory_size+1)/2 +1 , (config.memory_size-1)/2):fill(0)
local output = input:clone()
output:narrow(1, (config.memory_size+1)/2 +1 , (config.memory_size-1)/2)
:copy(input:narrow(1, 2, (config.memory_size-1)/2))
input = distUtils.toDistTensor(input, config.memory_size)
output = distUtils.toDistTensor(output, config.memory_size)
local loss_mask = torch.ones(config.memory_size, config.memory_size)
return input, output, loss_mask
end
return config