-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbootstrap_rf.m
141 lines (129 loc) · 6.03 KB
/
bootstrap_rf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
% function [rdl, vrtcl, rdl_obs, vrtl_obs, rf, rf_n] = bootstrap_rf
close all;
clear;
% test the noise and coda in the synthetics
hvsd = @(x) (0.5*(x == 0) + (x > 0)); % heavy side function
dir_name = strcat('~/Documents/LAB/synthetic_diff_p_gf');
cd(dir_name)
lis_r = dir('~/Documents/LAB/synthetic_diff_p_gf/*svh'); % radial component
lis_z = dir('~/Documents/LAB/synthetic_diff_p_gf/*svv'); % vertical component
%figure
%% calculation of synthetic move-out correction
p = 0.072:0.002:0.111;
rseis = readsac(lis_r(1).name);
dt = rseis.headerA(1);
ts_tsp(:) = (sqrt(1.59^-2 - p.^2) - sqrt(2.6^-2 - p.^2)).*1.8 + ...
(sqrt(3.53^-2 - p.^2) - sqrt(6.1^-2 - p.^2)).*11.9 + ...
(sqrt(3.71^-2 - p.^2) - sqrt(6.5^-2 - p.^2)).*14.08 + ...
(sqrt(3.93^-2 - p.^2) - sqrt(6.9^-2 - p.^2)).*22.78 + ...
(sqrt(4.53^-2 - p.^2) - sqrt(8.17^-2 - p.^2))*57.22 ;
lag_rf = round(ts_tsp/dt);
%%
for j = 1:800
for i = 1:5
rseis = readsac(lis_r(i).name);
zseis = readsac(lis_z(i).name);
nt = rseis.nsamps; % no of sample points
% dt = rseis.headerA(1);
time = dt*(0:1:numel(rseis.data)-1);
t_s = time(abs(rseis.data) == max(abs(rseis.data)));
t_p = ts_tsp(i);
cv = 1.5 * max(abs(zseis.data));
csc = 1.5 * max(abs(rseis.data));
Noise = -1 + (1+1)*rand(1, nt);
Noise_1 = -1 + (1+1)*rand(1, nt);
gamma = 0.02;
pscatter = cv.* conv( Noise.*exp(-gamma.*time), gauss(time, 1, 2))./50 ;
sscatter = csc.* conv( Noise_1.*exp(-gamma.*time), gauss(time, 1, 2))./50;
% take the shift of two so that the gaussian pulse can be seen in time
pcoda = circshift(pscatter(1:nt), lag_rf).* hvsd(time - t_p);
scoda = circshift(sscatter(1:nt), round(t_s/dt)).* hvsd(time - t_s);
% add the p and s wave coda and the background noise in the seismogram
zseis_obs = zseis.data' + pcoda + scoda + Noise.*1.e-2.* max(abs(zseis.data));
Noise_2 = -1 + (1+1)*rand(1, nt);
Noise_3 = -1 + (1+1)*rand(1, nt);
pscatter_r = cv.* conv( Noise_2.*exp(-gamma.*time), gauss(time, 1, 2))./50;
sscatter_r = csc.* conv( Noise_3.*exp(-gamma.*time), gauss(time, 1, 2))./50;
pcoda_r = circshift( pscatter_r(1:nt), lag_rf).* hvsd(time - t_p);
scoda_r = circshift( sscatter_r(1:nt), round(t_s/dt)).* hvsd(time - t_s);
rseis_obs = rseis.data' + pcoda_r + scoda_r + (Noise.*1.e-2.* max(abs(rseis.data)));
rseis_sf = readsac(lis_r(1).name);
[acor,lag] = xcorr(rseis_sf.data,rseis.data);
[~,I] = max((acor));
lagDiff = lag(I);
rdl(i*j,:) = circshift(rseis.data, lagDiff);
vrtcl(i*j,:) = circshift(zseis.data, lagDiff);
rdl_obs(i*j,:) = circshift(rseis_obs, lagDiff);
vrtl_obs(i*j,:) = circshift(zseis_obs, lagDiff);
% if want to add random background noise + (Noise_r.*1.e-2.* max(abs(rseis.data))) ;
% set(gca, 'Fontsize', 16)
wlevel = 0.01; % water level, value of max amplitude
tdel = 4000;
rf_n(i*j,:) = water_level(zseis_obs', rseis_obs', wlevel, dt, nt);
rf(i*j,:) = water_level(zseis.data, rseis.data, wlevel, dt, nt);
end
end
%% bootstrapping for differenet kinds
bs_samples = 20:10:100;
m = 500;
for l = 1:length(bs_samples)
for k = 1:m
r = randi([1 4000],1,bs_samples(l));
wlevel = 0.01;
nt = rseis.nsamps; % no of sample points
time = dt*(0:1:numel(rseis.data)-1);
% load the bootstrap data
rdl_bs = rdl(r,:);
vrtl_bs = vrtcl(r, :);
rdl_obs_bs = rdl_obs(r, :);
vrtl_obs_bs = vrtl_obs(r, :);
rf_bs = rf(r, :);
rf_n_bs = rf_n(r, :);
% stacking components first
stack_comp.radial = mean(rdl_bs); stack_comp.vrtcl = mean(vrtl_bs);
stack_comp.radial_obs = mean(rdl_obs_bs) ; stack_comp.vrtcl_obs = mean(vrtl_obs_bs);
stack_comp.rf_n(k,:) = water_level(stack_comp.vrtcl_obs', stack_comp.radial_obs', ...
wlevel, dt, nt);
stack_comp.rf(k,:) = water_level(stack_comp.vrtcl', stack_comp.radial', wlevel, dt, nt);
stack_comp.rf_n(k,:) = stack_comp.rf_n(k,:)./(max(abs(stack_comp.rf_n(k,:) ) ) );
stack_comp.rf(k,:) = stack_comp.rf(k,:)./(max(abs(stack_comp.rf(k,:) ) ) );
stack_cdp.rf_n(k, :) = mean(rf_n_bs); stack_cdp.rf(k, :) = mean(rf_bs);
stack_cdp.rf_n(k,:) = stack_cdp.rf_n(k,:)./(max(abs(stack_cdp.rf_n(k,:) ) ) );
stack_cdp.rf(k,:) = stack_cdp.rf(k,:)./(max(abs(stack_cdp.rf(k,:) ) ) );
% % stacking of the SV component and calculate recevier functions from stack
%
% for i = 1:n
% rf_ss(i,:) = water_level(vrtl_bs(i,:)', stack_comp.radial', wlevel, dt, nt);
% rf_ss_obs(i,:) = water_level(vrtl_obs_bs(i,:)', stack_comp.radial_obs'...
% , wlevel, dt, nt);
% end
% stack_sv.rf = mean(rf_ss); stack_sv.rf_n = mean(rf_ss_obs);
% calculate misfit of the sp phase
stack_comp.misfit(k) = sum ( ( (stack_comp.rf (time >= 146 & time <= 153) - ...
stack_comp.rf_n (time >= 146 & time <= 153)).^2 ) ) ;
stack_cdp.misfit(k) = sum ( ( (stack_cdp.rf (time >= 146 & time <= 153) - ...
stack_cdp.rf_n (time >= 146 & time <= 153)).^2 ) );
% stack_sv.misfit(k) = sum ( (stack_sv.rf (time >= 146 & time <= 153) - ...
% stack_sv.rf_n (time >= 146 & time <= 153)).^2 );
end
comp_misfit(l, :) = stack_comp.misfit;
cdp_misfit(l,:) = stack_cdp.misfit;
end
%%
figure
rf_n_norm = rf_n./max(abs(rf_n), [], 2);
rf_norm = rf./max(abs(rf), [], 2);
% plot(time, circshift(rf_n_norm(6,:), 4000), 'k:', 'linewidth', 1.5)
% hold on
% plot(time, circshift(rf_norm(6,:), 4000), 'k', 'linewidth', 2.5)
plot(time, circshift(stack_comp.rf_n(6,:), 4000), 'r', 'linewidth', 1.5)
hold on
plot(time, circshift(stack_cdp.rf_n(6,:), 4000), 'b', 'linewidth', 1.5)
title('RF', 'Fontsize', 18)
fig = gcf;
fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 15 6];
xlim([0 160])
set(gca, 'Fontsize', 36)
xlabel('Time(s)', 'Fontsize', 36)
ylabel('Normalized amplitude of RFs', 'Fontsize', 36)