Skip to content

Latest commit

 

History

History
40 lines (38 loc) · 2.3 KB

README.md

File metadata and controls

40 lines (38 loc) · 2.3 KB

Authio

Implements a densely connected neural network architecture to augment password security through biometric keystroke analysis. When tested on the CMU Keystroke Dynamics Benchmark Dataset, the model reports a 0% false positive rate and a sub 1% false negative rate.

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_1 (Dense)              (None, 256)               8192      
_________________________________________________________________
dropout_1 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 128)               32896     
_________________________________________________________________
batch_normalization_1 (Batch (None, 128)               512       
_________________________________________________________________
dense_3 (Dense)              (None, 128)               16512     
_________________________________________________________________
dropout_2 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_4 (Dense)              (None, 64)                8256      
_________________________________________________________________
batch_normalization_2 (Batch (None, 64)                256       
_________________________________________________________________
dense_5 (Dense)              (None, 32)                2080      
_________________________________________________________________
dropout_3 (Dropout)          (None, 32)                0         
_________________________________________________________________
dense_6 (Dense)              (None, 16)                528       
_________________________________________________________________
batch_normalization_3 (Batch (None, 16)                64        
_________________________________________________________________
dense_7 (Dense)              (None, 2)                 34        
=================================================================
Total params: 69,330
Trainable params: 68,914
Non-trainable params: 416
_________________________________________________________________