-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathANN_recog_num_gui.py
241 lines (201 loc) · 7.89 KB
/
ANN_recog_num_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import math
from pathlib import Path
import struct
from io import BufferedReader
from matplotlib import pyplot as plt
import copy
from tqdm import tqdm
from dearpygui.core import *
from dearpygui.simple import *
train_img_path = './mnist/train-images.idx3-ubyte'
train_label_path = './mnist/train-labels.idx1-ubyte'
test_img_path = './mnist/t10k-images.idx3-ubyte'
test_label_path = './mnist/t10k-labels.idx1-ubyte'
train_num = 50000
valid_num = 10000
test_num = 10000
def file_trans_np(file_path,sel):
with open(file_path,'rb') as f:
if sel == 'img':
struct.unpack('>4i',f.read(16))
rs = np.fromfile(f,dtype = np.uint8).reshape(-1,28*28)/255
if sel == 'lab':
struct.unpack('>2i',f.read(8))
rs = np.fromfile(f,dtype = np.uint8)
return rs
train_img = file_trans_np(train_img_path,'img')[:train_num]
train_lab = file_trans_np(train_label_path,'lab')[:train_num]
valid_img = file_trans_np(train_img_path,'img')[train_num:]
valid_lab = file_trans_np(train_label_path,'lab')[train_num:]
test_img = file_trans_np(test_img_path,'img')
test_lab = file_trans_np(test_label_path,'lab')
def bypass(x):
return x
def tanh(x):
return np.tanh(x)
def softmax(x):
exp = np.exp(x - x.max())
return exp/exp.sum()
def d_bypass(data):
return 1
def d_softmax(data):
sm = softmax(data)
return np.diag(sm) - np.outer(sm,sm)
def d_tanh(data):
return 1/(np.cosh(data))**2
differential = {softmax:d_softmax,tanh:d_tanh,bypass:d_bypass}
d_type = {bypass:'times',softmax:'dot',tanh:'times'}
dimensions = [28*28,100,10]
activation = [bypass,tanh,softmax]
distribution = [
{
#'b':[0,0]
},
{
'b':[0,0],
'w':[-math.sqrt(6/(dimensions[0]+dimensions[1])),math.sqrt(6/(dimensions[0]+dimensions[1]))]
},
{
'b':[0,0],
'w':[-math.sqrt(6/(dimensions[1]+dimensions[2])),math.sqrt(6/(dimensions[1]+dimensions[2]))]
}
]
def init_parameter_b(layer):
dist = distribution[layer]['b']
return np.random.rand(dimensions[layer])*(dist[1]-dist[0])+dist[0]
def init_parameter_w(layer):
dist = distribution[layer]['w']
return np.random.rand(dimensions[layer-1],dimensions[layer])*(dist[1]-dist[0])+dist[0]
def init_parameters():
paremeter = []
for i in range(len(distribution)):
layer_paremeter = {}
for j in distribution[i].keys():
if j == 'b':
layer_paremeter['b'] = init_parameter_b(i)
continue
if j == 'w':
layer_paremeter['w'] = init_parameter_w(i)
continue
paremeter.append(layer_paremeter)
return paremeter
global parameters
parameters = init_parameters()
def predict(img,parameters):
l_in = img
l_out = activation[0](l_in)
for layer in range(1,len(dimensions)):
l_in = np.dot(l_out,parameters[layer]['w'])+parameters[layer]['b']
l_out = activation[layer](l_in)
return l_out
onehot = np.identity(dimensions[-1])
def sqr_loss(img,lab,parameters):
y_pred = predict(img,parameters)
y = onehot[lab]
diff = y - y_pred
return np.dot(diff,diff)
def grad_parameters(img,lab,parameters):
l_in_list = [img]
l_out_list = [activation[0](l_in_list[0])]
for layer in range(1,len(dimensions)):
l_in = np.dot(l_out_list[layer-1],parameters[layer]['w'])+parameters[layer]['b']
l_out = activation[layer](l_in)
l_in_list.append(l_in)
l_out_list.append(l_out)
d_layer = -2*(onehot[lab] - l_out_list[-1])
grad_result = [None] * len(dimensions)
for layer in range(len(dimensions)-1,0,-1):
if d_type[activation[layer]] == 'times':
d_layer = differential[activation[layer]](l_in_list[layer])*d_layer
if d_type[activation[layer]] == 'dot':
d_layer = np.dot(differential[activation[layer]](l_in_list[layer]),d_layer)
grad_result[layer] = {}
grad_result[layer]['b'] = d_layer
grad_result[layer]['w'] = np.outer(l_out_list[layer-1],d_layer)
d_layer = np.dot(parameters[layer]['w'],d_layer)
return grad_result
def loss(parameters,types):
loss_accu = 0
if types == "train":
for img_i in range(train_num):
loss_accu += sqr_loss(train_img[img_i],train_lab[img_i],parameters)
loss_accu = loss_accu/(train_num/10000)
if types == "valid":
for img_i in range(valid_num):
loss_accu += sqr_loss(valid_img[img_i],valid_lab[img_i],parameters)
loss_accu = loss_accu/(valid_num/10000)
return loss_accu
def accuracy(parameters,types):
if types == "train":
correct = [predict(train_img[img_i],parameters).argmax() == train_lab[img_i] for img_i in range(train_num)]
if types == "valid":
correct = [predict(valid_img[img_i],parameters).argmax() == valid_lab[img_i] for img_i in range(valid_num)]
if types == "test":
correct = [predict(test_img[img_i],parameters).argmax() == test_lab[img_i] for img_i in range(test_num)]
return correct.count(True)/len(correct)
batch_size = 100
def grad_count(grad1,grad2,types):
for layer in range(1,len(grad1)):
for pname in grad1[layer].keys():
if types == "add":
grad1[layer][pname] += grad2[layer][pname]
if types == "divide":
grad1[layer][pname] /= grad2
return grad1
def train_batch(current_batch,parameters):
grad_accu = grad_parameters(train_img[current_batch*batch_size+0],train_lab[current_batch*batch_size+0],parameters)
for img_i in range(1,batch_size):
grad_tmp = grad_parameters(train_img[current_batch*batch_size+img_i],train_lab[current_batch*batch_size+img_i],parameters)
grad_count(grad_accu,grad_tmp,"add")
grad_count(grad_accu,batch_size,"divide")
return grad_accu
def combine_parameters(parameters,grad,learn_rate):
parameters_tmp = copy.deepcopy(parameters)
for layer in range(1,len(parameters_tmp)):
for pname in parameters_tmp[layer].keys():
parameters_tmp[layer][pname] -= learn_rate * grad[layer][pname]
return parameters_tmp
def train(parameters,learn_rate,epoch_num,statistics=False):
for epoch in range(epoch_num):
for i in range(train_num//batch_size):
if i%100 == 99:
with window("retrieve_train"):
add_text("running batch {}/{}".format(i+1,train_num//batch_size))
grad_tmp = train_batch(i,parameters)
parameters = combine_parameters(parameters,grad_tmp,learn_rate)
with window("retrieve_train"):
add_text("train complete!")
return parameters
def retrieve_train(sender, data):
delete_item("retrieve_train")
with window("retrieve_train"):
add_text("learn rate: " + str(round(get_value("learn rate"),4)))
add_text("epoch_num: " + str(get_value("epoch_num")))
add_text("please wait...")
global parameters
parameters = train(parameters,round(get_value("learn rate"),4),get_value("epoch_num"))
global accuracy_list
accuracy_list = []
def retrieve_accuracy(sender, data):
delete_item("retrieve_accuracy")
with window("retrieve_accuracy"):
accu = accuracy(parameters,"valid")
add_text("current accuracy : {}".format(str(accu)))
global accuracy_list
accuracy_list.append(accu)
def retrieve_show(sender, data):
delete_item("retrieve_show")
with window("retrieve_show"):
add_text("current accuracy_list : {}".format(str(accuracy_list)))
add_text("click accuracy button to add list")
add_simple_plot("", value=accuracy_list, height=300)
with window("test"):
add_input_float("learn rate",default_value=0.6)
add_input_int("epoch_num",default_value=1)
add_button("accuracy", callback=retrieve_accuracy)
add_button("train", callback=retrieve_train)
add_button("show", callback=retrieve_show)
set_main_window_size(500, 500)
set_primary_window("test",True)
start_dearpygui()