-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
138 lines (108 loc) · 5.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import numpy as np
import os
from matplotlib import pyplot as plt
import time
import mediapipe as mp
from sklearn.metrics import multilabel_confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from scipy import stats
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
def mediapipe_detection(image, model):
if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB
image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Make prediction
image.flags.writeable = True # Image is now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR
return image, results
else:
return None, None
def draw_styled_landmarks(image, results):
# Draw face connections
if image is not None:
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_TESSELATION,
mp_drawing.DrawingSpec(color=(80, 110, 10), thickness=1, circle_radius=1),
mp_drawing.DrawingSpec(color=(80, 256, 121), thickness=1, circle_radius=1)
)
# Draw pose connections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(80, 22, 10), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(80, 44, 121), thickness=2, circle_radius=2)
)
# Draw left hand connections
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(121, 22, 76), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(121, 44, 250), thickness=2, circle_radius=2)
)
# Draw right hand connections
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2)
)
else:
return
def landmarks_data(results):
pose = np.array([[res.x, res.y] for res in
results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33 * 2)
# face = np.array([[res.x, res.y, res.z] for res in
# results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468 * 3)
lh = np.array([[res.x, res.y] for res in
results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(
21 * 2)
rh = np.array([[res.x, res.y] for res in
results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(
21 * 2)
return np.concatenate([pose, lh, rh])
def pad_sequence(data, max_frame_length):
pose = np.zeros(33 * 2)
lh = np.zeros(21 * 2)
rh = np.zeros(21 * 2)
padding = np.concatenate([pose, lh, rh])
seq_length = len(data)
if not seq_length == max_frame_length:
diff = max_frame_length - seq_length
for _ in range(diff):
data.append(padding)
return data
def accuracy(model, X_test, y_test):
yhat = model.predict(X_test)
ytrue = np.argmax(y_test, axis=1).tolist()
yhat = np.argmax(yhat, axis=1).tolist()
return accuracy_score(ytrue, yhat)
def get_data(train=False, test=True):
sequences, labels = [], []
data_folder = 'keypoint_data'
actions = sorted(os.listdir(data_folder))
label_map = {label: num for num, label in enumerate(actions)}
for action in actions:
for video_file in os.listdir(os.path.join(data_folder, action)):
data = np.load(os.path.join(data_folder, action, video_file))
sequences.append(data)
labels.append(label_map[action])
X = np.array(sequences, dtype=np.float32)
y = to_categorical(labels)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05)
if train is False or test is True:
return X_test, y_test
elif train is True or test is False:
return X_train, y_train
def prob_viz(res, actions, input_frame):
if res is not None:
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.putText(output_frame, f"{actions[num]} : {int(prob * 100)}% ", (10, 85 + num * 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2,
cv2.LINE_AA)
return output_frame
else:
output_frame = input_frame.copy()
for num in range(len(actions)):
prob = 0
cv2.putText(output_frame, f"{actions[num]} : {int(prob * 100)}% ", (10, 85 + num * 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2,
cv2.LINE_AA)
return output_frame