Skip to content

Commit ff95772

Browse files
committed
2 parents cb146a4 + c5ca210 commit ff95772

File tree

1 file changed

+9
-7
lines changed

1 file changed

+9
-7
lines changed

plasma-partition.tex

+9-7
Original file line numberDiff line numberDiff line change
@@ -212,7 +212,7 @@ \section{Theory of thermal matter-antimatter plasmas}
212212
\label{kgp}
213213
E^{n}_{\sigma,s}(p_{z},{\cal B})=\sqrt{m_{e}^{2}+p_{z}^{2}+e{\cal B}\left(2n+1+\frac{g}{2}\sigma s\right)}\,,
214214
\end{align}
215-
where $n\in0,1,2,\ldots$ is the Landau orbital quantum number. \req{kgp} differentiates between electrons and positrons which is to ensure the correct non-relativistic limit is reached; see \rf{tab:1}. The parameter $g$ is the gyro-magnetic ($g$-factor) of the particle. Following the conventions found in \cite{Tiesinga:2021myr}, we set $g\equiv g_{e^{+}}=-g_{e^{-}}>0$ such that electrons and positrons have opposite $g$-factors and opposite magnetic moments.
215+
where $n\in0,1,2,\ldots$ is the Landau orbital quantum number. \req{kgp} differentiates between electrons and positrons which is to ensure the correct non-relativistic limit is reached; see \rf{fig:schematic}. The parameter $g$ is the gyro-magnetic ($g$-factor) of the particle. Following the conventions found in \cite{Tiesinga:2021myr}, we set $g\equiv g_{e^{+}}=-g_{e^{-}}>0$ such that electrons and positrons have opposite $g$-factors and opposite magnetic moments which is schematically shown in \rf{fig:schematic}.
216216
217217
As statistical properties depend on the characteristic Boltzmann factor $E/T$, another interpretation of \req{tbscale} in the context of energy eigenvalues (such as those given in \req{kgp}) is the preservation of magnetic moment energy relative to momentum under adiabatic cosmic expansion.
218218
@@ -250,7 +250,7 @@ \section{Theory of thermal matter-antimatter plasmas}
250250
\cline{2-3}
251251
\end{tabular}
252252
\caption{Organizational schematic of matter-antimatter $(\sigma)$ and polarization $(s)$ states with respect to the sign of the non-relativistic magnetic dipole energy $U_{\rm Mag}$ (obtainable from \req{kgp}) and the chemical $\mu$ and polarization $\eta$ potentials as seen in \req{partitionpower:2}.}
253-
\label{tab:1}
253+
\label{fig:schematic}
254254
\end{figure}
255255
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
256256
@@ -283,22 +283,24 @@ \subsection{Spin and spin-orbit partition functions}
283283
+\exp\left(k\frac{-\mu-\eta}{T}\right)\exp\left(-k\frac{{\tilde m}_{-,+}\varepsilon_{-,+}^{n}}{T}\right)\\
284284
+\left.\exp\left(k\frac{-\mu+\eta}{T}\right)\exp\left(-k\frac{{\tilde m}_{-,-}\varepsilon_{-,-}^{n}}{T}\right)\right)
285285
\end{multline}
286-
We note from \rf{tab:1} that the first and forth terms and the second and third terms share the same energies via
287-
\begin{align}
286+
We note from \rf{fig:schematic} that the first and forth terms and the second and third terms share the same energies via
287+
\begin{gather}
288288
\label{partitionpower:3}
289289
\varepsilon_{+,+}^{n}=\varepsilon_{-,-}^{n}\,,\qquad
290290
\varepsilon_{+,-}^{n}=\varepsilon_{-,+}^{n}\,.\qquad
291-
\varepsilon_{+,-}^{n}<\varepsilon_{+,+}^{n}\,,
292-
\end{align}
291+
\varepsilon_{+,-}^{n}<\varepsilon_{+,+}^{n}\,.
292+
\end{gather}
293293
294-
\req{partitionpower:3} allows us to reorganize the partition function with a new magnetization quantum number $s'$ which characterizes paramagnetic flux increasing states $(s'=+1)$ and diamagnetic flux decreasing states $(s'=-1)$. This recasts \req{partitionpower:2} as {\color{red}(maybe we should show $\epsilon_{s^\prime}=\epsilon_{++},\epsilon_{+-}$ clear )}
294+
\req{partitionpower:3} allows us to reorganize the partition function with a new magnetization quantum number $s'$ which characterizes paramagnetic flux increasing states $(s'=+1)$ and diamagnetic flux decreasing states $(s'=-1)$. This recasts \req{partitionpower:2} as
295295
\begin{multline}
296296
\label{partitionpower:4}
297297
\ln{{\cal Z}_{e^{+}e^{-}}}=\frac{e{\cal B}V}{(2\pi)^{2}}\sum_{s'}^{\pm1}\sum_{n=0}^{\infty}\sum_{k=1}^{\infty}\int_{-\infty}^{+\infty}{\rm d}p_{z}\frac{(-1)^{k+1}}{k}\\
298298
\left[2\xi_{s'}\cosh\frac{k\mu}{T}\right]\exp\left(-k\frac{{\tilde m}_{s'}\varepsilon_{s'}^{n}}{T}\right)
299299
\end{multline}
300300
with dimensionless energy, polarization mass, and polarization redefined in terms of $s'$
301301
\begin{gather}
302+
\epsilon_{s'=+1}^{n}=\epsilon_{+,-}^{n}\,,\qquad
303+
\epsilon_{s'=-1}^{n}=\epsilon_{+,+}^{n}\,,\\
302304
{\tilde m}_{s'}^{2}=m_{e}^{2}+e{\cal B}\left(1-\frac{g}{2}s'\right)\,,\\
303305
\eta\equiv\eta_{+}=-\eta_{-}\qquad\xi\equiv\xi_{+}=\xi_{-}^{-1}\,.
304306
\end{gather}

0 commit comments

Comments
 (0)