-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmySSA.py
262 lines (236 loc) · 11 KB
/
mySSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import pandas as pd
from numpy import matrix as m
from pandas import DataFrame as df
from scipy import linalg
try:
import seaborn
except:
pass
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 11, 4
class mySSA(object):
'''Singular Spectrum Analysis object'''
def __init__(self, time_series):
self.ts = pd.DataFrame(time_series)
self.ts_name = self.ts.columns.tolist()[0]
if self.ts_name==0:
self.ts_name = 'ts'
self.ts_v = self.ts.values
self.ts_N = self.ts.shape[0]
self.freq = self.ts.index.inferred_freq
@staticmethod
def _printer(name, *args):
'''Helper function to print messages neatly'''
print('-'*40)
print(name+':')
for msg in args:
print(msg)
@staticmethod
def _dot(x,y):
'''Alternative formulation of dot product to allow missing values in arrays/matrices'''
pass
@staticmethod
def get_contributions(X=None, s=None, plot=True):
'''Calculate the relative contribution of each of the singular values'''
lambdas = np.power(s,2)
frob_norm = np.linalg.norm(X)
ret = df(lambdas/(frob_norm**2), columns=['Contribution'])
ret['Contribution'] = ret.Contribution.round(4)
if plot:
ax = ret[ret.Contribution!=0].plot.bar(legend=False)
ax.set_xlabel("Lambda_i")
ax.set_title('Non-zero contributions of Lambda_i')
vals = ax.get_yticks()
ax.set_yticklabels(['{:3.2f}%'.format(x*100) for x in vals])
return ax
return ret[ret.Contribution>0]
@staticmethod
def diagonal_averaging(hankel_matrix):
'''Performs anti-diagonal averaging from given hankel matrix
Returns: Pandas DataFrame object containing the reconstructed series'''
mat = m(hankel_matrix)
L, K = mat.shape
L_star, K_star = min(L,K), max(L,K)
new = np.zeros((L,K))
if L > K:
mat = mat.T
ret = []
#Diagonal Averaging
for k in range(1-K_star, L_star):
mask = np.eye(K_star, k=k, dtype='bool')[::-1][:L_star,:]
mask_n = sum(sum(mask))
ma = np.ma.masked_array(mat.A, mask=1-mask)
ret+=[ma.sum()/mask_n]
return df(ret).rename(columns={0:'Reconstruction'})
def view_time_series(self):
'''Plot the time series'''
self.ts.plot(title='Original Time Series')
def embed(self, embedding_dimension=None, suspected_frequency=None, verbose=False, return_df=False):
'''Embed the time series with embedding_dimension window size.
Optional: suspected_frequency changes embedding_dimension such that it is divisible by suspected frequency'''
if not embedding_dimension:
self.embedding_dimension = self.ts_N//2
else:
self.embedding_dimension = embedding_dimension
if suspected_frequency:
self.suspected_frequency = suspected_frequency
self.embedding_dimension = (self.embedding_dimension//self.suspected_frequency)*self.suspected_frequency
self.K = self.ts_N-self.embedding_dimension+1
self.X = m(linalg.hankel(self.ts, np.zeros(self.embedding_dimension))).T[:,:self.K]
self.X_df = df(self.X)
self.X_complete = self.X_df.dropna(axis=1)
self.X_com = m(self.X_complete.values)
self.X_missing = self.X_df.drop(self.X_complete.columns, axis=1)
self.X_miss = m(self.X_missing.values)
self.trajectory_dimentions = self.X_df.shape
self.complete_dimensions = self.X_complete.shape
self.missing_dimensions = self.X_missing.shape
self.no_missing = self.missing_dimensions[1]==0
if verbose:
msg1 = 'Embedding dimension\t: {}\nTrajectory dimensions\t: {}'
msg2 = 'Complete dimension\t: {}\nMissing dimension \t: {}'
msg1 = msg1.format(self.embedding_dimension, self.trajectory_dimentions)
msg2 = msg2.format(self.complete_dimensions, self.missing_dimensions)
self._printer('EMBEDDING SUMMARY', msg1, msg2)
if return_df:
return self.X_df
def decompose(self, verbose=False):
'''Perform the Singular Value Decomposition and identify the rank of the embedding subspace
Characteristic of projection: the proportion of variance captured in the subspace'''
X = self.X_com
self.S = X*X.T
self.U, self.s, self.V = linalg.svd(self.S)
self.U, self.s, self.V = m(self.U), np.sqrt(self.s), m(self.V)
self.d = np.linalg.matrix_rank(X)
Vs, Xs, Ys, Zs = {}, {}, {}, {}
for i in range(self.d):
Zs[i] = self.s[i]*self.V[:,i]
Vs[i] = X.T*(self.U[:,i]/self.s[i])
Ys[i] = self.s[i]*self.U[:,i]
Xs[i] = Ys[i]*(m(Vs[i]).T)
self.Vs, self.Xs = Vs, Xs
self.s_contributions = self.get_contributions(X, self.s, False)
self.r = len(self.s_contributions[self.s_contributions>0])
self.r_characteristic = round((self.s[:self.r]**2).sum()/(self.s**2).sum(),4)
self.orthonormal_base = {i:self.U[:,i] for i in range(self.r)}
if verbose:
msg1 = 'Rank of trajectory\t\t: {}\nDimension of projection space\t: {}'
msg1 = msg1.format(self.d, self.r)
msg2 = 'Characteristic of projection\t: {}'.format(self.r_characteristic)
self._printer('DECOMPOSITION SUMMARY', msg1, msg2)
def view_s_contributions(self, adjust_scale=False, cumulative=False, return_df=False):
'''View the contribution to variance of each singular value and its corresponding signal'''
contribs = self.s_contributions.copy()
contribs = contribs[contribs.Contribution!=0]
if cumulative:
contribs['Contribution'] = contribs.Contribution.cumsum()
if adjust_scale:
contribs = (1/contribs).max()*1.1-(1/contribs)
ax = contribs.plot.bar(legend=False)
ax.set_xlabel("Singular_i")
ax.set_title('Non-zero{} contribution of Singular_i {}'.\
format(' cumulative' if cumulative else '', '(scaled)' if adjust_scale else ''))
if adjust_scale:
ax.axes.get_yaxis().set_visible(False)
vals = ax.get_yticks()
ax.set_yticklabels(['{:3.0f}%'.format(x*100) for x in vals])
if return_df:
return contribs
@classmethod
def view_reconstruction(cls, *hankel, names=None, return_df=False, plot=True, symmetric_plots=False):
'''Visualise the reconstruction of the hankel matrix/matrices passed to *hankel'''
hankel_mat = None
for han in hankel:
if isinstance(hankel_mat,m):
hankel_mat = hankel_mat + han
else:
hankel_mat = han.copy()
hankel_full = cls.diagonal_averaging(hankel_mat)
title = 'Reconstruction of signal'
if names or names==0:
title += ' associated with singular value{}: {}'
title = title.format('' if len(str(names))==1 else 's', names)
if plot:
ax = hankel_full.plot(legend=False, title=title)
if symmetric_plots:
velocity = hankel_full.abs().max()[0]
ax.set_ylim(bottom=-velocity, top=velocity)
if return_df:
return hankel_full
def _forecast_prep(self, singular_values=None):
self.X_com_hat = np.zeros(self.complete_dimensions)
self.verticality_coefficient = 0
self.forecast_orthonormal_base = {}
if singular_values:
try:
for i in singular_values:
self.forecast_orthonormal_base[i] = self.orthonormal_base[i]
except:
if singular_values==0:
self.forecast_orthonormal_base[0] = self.orthonormal_base[0]
else:
raise('Please pass in a list/array of singular value indices to use for forecast')
else:
self.forecast_orthonormal_base = self.orthonormal_base
self.R = np.zeros(self.forecast_orthonormal_base[0].shape)[:-1]
for Pi in self.forecast_orthonormal_base.values():
self.X_com_hat += Pi*Pi.T*self.X_com
pi = np.ravel(Pi)[-1]
self.verticality_coefficient += pi**2
self.R += pi*Pi[:-1]
self.R = m(self.R/(1-self.verticality_coefficient))
self.X_com_tilde = self.diagonal_averaging(self.X_com_hat)
def forecast_recurrent(self, steps_ahead=12, singular_values=None, plot=False, return_df=False, **plotargs):
'''Forecast from last point of original time series up to steps_ahead using recurrent methodology
This method also fills any missing data from the original time series.'''
try:
self.X_com_hat
except(AttributeError):
self._forecast_prep(singular_values)
self.ts_forecast = np.array(self.ts_v[0])
for i in range(1, self.ts_N+steps_ahead):
try:
if np.isnan(self.ts_v[i]):
x = self.R.T*m(self.ts_forecast[max(0,i-self.R.shape[0]): i]).T
self.ts_forecast = np.append(self.ts_forecast,x[0])
else:
self.ts_forecast = np.append(self.ts_forecast,self.ts_v[i])
except(IndexError):
x = self.R.T*m(self.ts_forecast[i-self.R.shape[0]: i]).T
self.ts_forecast = np.append(self.ts_forecast, x[0])
self.forecast_N = i+1
new_index = pd.date_range(start=self.ts.index.min(),periods=self.forecast_N, freq=self.freq)
forecast_df = df(self.ts_forecast, columns=['Forecast'], index=new_index)
forecast_df['Original'] = np.append(self.ts_v, [np.nan]*steps_ahead)
if plot:
forecast_df.plot(title='Forecasted vs. original time series', **plotargs)
if return_df:
return forecast_df
if __name__=='__main__':
from mySSA import mySSA
from pandas import DataFrame as df
import pandas as pd
import numpy as np
from matplotlib.pylab import rcParams
# Construct the data with gaps
ts = pd.read_csv('AirPassengers.csv', parse_dates=True, index_col='Month')
ts_ = ts.copy()
ts_.ix[67:79] = np.nan
ts_ = ts_.set_value('1961-12-01','#Passengers', np.nan).asfreq('MS')
ssa = mySSA(ts_)
# Plot original series for reference
ssa.view_time_series()
ssa.embed(embedding_dimension=36, suspected_frequency=12, verbose=True)
ssa.decompose(True)
ssa.view_s_contributions(adjust_scale=True)
# Component Signals
components = [i for i in range(13)]
rcParams['figure.figsize'] = 11, 2
for i in range(5):
ssa.view_reconstruction(ssa.Xs[i], names=i, symmetric_plots=i!=0)
rcParams['figure.figsize'] = 11, 4
# RECONSTRUCTION
ssa.view_reconstruction(*[ssa.Xs[i] for i in components], names=components)
# FORECASTING
ssa.forecast_recurrent(steps_ahead=48, plot=True)