forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_t5.py
261 lines (213 loc) · 9.33 KB
/
pretrain_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain T5"""
from functools import partial
import torch
from megatron.training import (
get_args,
get_timers,
get_tokenizer,
print_rank_0
)
from megatron.core import mpu, tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.t5_dataset import (
T5MaskedWordPieceDataset,
T5MaskedWordPieceDatasetConfig,
)
from megatron.core.enums import ModelType
from megatron.core.models.T5 import T5Model
from megatron.training import pretrain
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.t5_dataset import T5MaskedWordPieceDataset, T5MaskedWordPieceDatasetConfig
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.models.T5.t5_spec import (get_t5_encoder_with_transformer_engine_block_spec,
get_t5_decoder_with_transformer_engine_block_spec,
get_t5_encoder_with_local_block_spec,
get_t5_decoder_with_local_block_spec)
from megatron.legacy.model import T5Model as NonCoreT5Model
"""
Pipeline parallelism for T5
(Caveat: currently, mcore T5 model has not supported pipeline-parallelism)
===========================
T5 is a model architecture with both encoder and decoder blocks.
Consequently, pipeline parallelism is implemented slightly differently
compared to architectures like GPT and BERT.
In particular, when pipeline_model_parallel_world_size > 1, each stage
either executes an encoder block or a decoder block. The
--pipeline-model-parallel-split-rank argument controls the rank at which
the split happens: all ranks lower than this argument execute the
encoder block, and all ranks equal to or higher than this argument value
execute the decoder block.
In the encoder section of the model, only one tensor is sent downstream:
the intermediate encoder_hidden_state. In the decoder section of the
model, two tensors are sent downstream in the forward pass: the fully
computed encoder_hidden_state, and the intermediate decoder_hidden_state.
In particular, these are the shapes of the tensors sent between
different workers:
If rank is in decoder section:
intermediate decoder_hidden_state (pre-transpose),
complete encoder_hidden_state (post-transpose).
If rank is at boundary between encoder and decoder sections:
complete encoder_hidden_state (post-transpose).
If rank is in encoder section:
intermediate encoder_hidden_state (pre-transpose).
Additionally, we have code in the backward_step function in schedules.py
to accumulate the encoder_hidden_state gradient across skip connections
(encoder_hidden_state fed in as input to each layer in the decoder).
"""
def model_provider(
pre_process=True, post_process=True, add_encoder=True, add_decoder=True
) -> T5Model:
"""Builds the model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
add_encoder (bool, optional): Defaults to True
add_decoder (bool, optional): Defaults to True
Returns:
T5Model: The returned T5 model
"""
args = get_args()
config = core_transformer_config_from_args(args)
if args.use_mcore_models:
if args.transformer_impl == "local":
en_block_spec = get_t5_encoder_with_local_block_spec(args.encoder_num_layers)
de_block_spec = get_t5_decoder_with_local_block_spec(args.decoder_num_layers)
elif args.transformer_impl == "transformer_engine":
en_block_spec = get_t5_encoder_with_transformer_engine_block_spec(
args.encoder_num_layers
)
de_block_spec = get_t5_decoder_with_transformer_engine_block_spec(
args.decoder_num_layers
)
print_rank_0('building T5 model ...')
model = T5Model(
config=config,
transformer_encoder_layer_spec=en_block_spec,
transformer_decoder_layer_spec=de_block_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent,
)
else:
model = NonCoreT5Model(
config=config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder,
)
return model
def get_batch(data_iterator):
"""Build the batch."""
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask', 'enc_mask', 'dec_mask', 'enc_dec_mask']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_enc = data_b['text_enc'].long()
tokens_dec = data_b['text_dec'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
enc_mask = data_b['enc_mask'] < 0.5
dec_mask = data_b['dec_mask'] < 0.5
enc_dec_mask = data_b['enc_dec_mask'] < 0.5
return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
"""Loss function.
Args:
loss_mask (torch.Tensor): Used to mask out some portions of the loss
output_tensor (torch.Tensor): The tensor with the losses
Returns:
the loss scalar for this micro-batch
the number of non-padded tokens in this microbatch
a dict containing reporting metrics on the loss and number of tokens across
the data parallel ranks
"""
lm_loss_ = output_tensor.float()
total_tokens = loss_mask.sum()
lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1))
lm_loss = torch.cat([lm_loss.view(1), total_tokens.view(1)])
reporting_loss = lm_loss.clone().detach()
torch.distributed.all_reduce(reporting_loss, group=mpu.get_data_parallel_group())
num_tokens = lm_loss[1].clone().detach().to(torch.int)
return lm_loss[0], num_tokens, {'lm loss': (reporting_loss[0], reporting_loss[1])}
def forward_step(data_iterator, model: T5Model):
"""Forward training step.
Args:
data_iterator : Input data iterator
model (T5Model): The T5 Model
"""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch generator', log_level=2).start()
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask = get_batch(
data_iterator
)
timers('batch generator').stop()
# Forward model lm_labels
output_tensor = model(
tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask, lm_labels=lm_labels
)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples: int):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train test and validation.
"""
args = get_args()
tokenizer = get_tokenizer()
config = T5MaskedWordPieceDatasetConfig(
random_seed=args.seed,
sequence_length=args.encoder_seq_length,
sequence_length_decoder=args.decoder_seq_length,
blend=get_blend_from_list(args.data_path),
blend_per_split=[
get_blend_from_list(args.train_data_path),
get_blend_from_list(args.valid_data_path),
get_blend_from_list(args.test_data_path)
],
split=args.split,
path_to_cache=args.data_cache_path,
tokenizer=tokenizer,
masking_probability=args.mask_prob,
short_sequence_probability=args.short_seq_prob,
masking_max_ngram=10,
masking_do_full_word=True,
masking_do_permutation=False,
masking_use_longer_ngrams=False,
masking_use_geometric_distribution=True,
)
print_rank_0('> building train, validation, and test datasets for T5 ...')
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
T5MaskedWordPieceDataset,
train_val_test_num_samples,
lambda: mpu.get_tensor_model_parallel_rank() == 0,
config,
).build()
print_rank_0("> finished creating T5 datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_and_decoder,
forward_step,
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'},
)