-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path_make.py
509 lines (431 loc) · 22.5 KB
/
_make.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import keras as ks
from kgcnn.layers.scale import get as get_scaler
from ._model import model_disjoint_weighted, model_disjoint_behler, model_disjoint_atom_wise
from kgcnn.layers.modules import Input
from kgcnn.models.casting import (template_cast_output, template_cast_list_input,
template_cast_list_input_docs, template_cast_output_docs)
from kgcnn.models.utils import update_model_kwargs
from keras.backend import backend as backend_to_use
# To be updated if model is changed in a significant way.
__model_version__ = "2023-12-06"
# Supported backends
__kgcnn_model_backend_supported__ = ["tensorflow", "torch", "jax"]
if backend_to_use() not in __kgcnn_model_backend_supported__:
raise NotImplementedError("Backend '%s' for model 'HDNNP2nd' is not supported." % backend_to_use())
# Implementation of HDNNP in `keras` from paper:
# Atom-centered symmetry functions for constructing high-dimensional neural network potentials
# by Jörg Behler (2011)
# https://aip.scitation.org/doi/abs/10.1063/1.3553717
model_default_weighted = {
"name": "HDNNP2nd",
"inputs": [
{"shape": (None,), "name": "node_number", "dtype": "int64"},
{"shape": (None, 3), "name": "node_coordinates", "dtype": "float32"},
{"shape": (None, 2), "name": "edge_indices", "dtype": "int64"},
{"shape": (None, 3), "name": "angle_indices_nodes", "dtype": "int64"},
{"shape": (), "name": "total_nodes", "dtype": "int64"},
{"shape": (), "name": "total_edges", "dtype": "int64"},
{"shape": (), "name": "total_angles", "dtype": "int64"}
],
"input_tensor_type": "padded",
"cast_disjoint_kwargs": {},
"has_charge_input": False,
"w_acsf_ang_kwargs": {},
"w_acsf_rad_kwargs": {},
"normalize_kwargs": None,
"const_normalize_kwargs": None,
"mlp_kwargs": {"units": [64, 64, 64],
"num_relations": 96,
"activation": ["swish", "swish", "linear"]},
"node_pooling_args": {"pooling_method": "sum"},
"verbose": 10,
"output_embedding": "graph", "output_to_tensor": True,
"predict_dipole": False,
"use_output_mlp": False,
"output_mlp": {"use_bias": [True, True], "units": [64, 1],
"activation": ["swish", "linear"]},
"output_tensor_type": "padded",
"output_scaling": None
}
@update_model_kwargs(model_default_weighted, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_model_weighted(inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
has_charge_input: bool = False,
node_pooling_args: dict = None,
name: str = None,
verbose: int = None,
w_acsf_ang_kwargs: dict = None,
w_acsf_rad_kwargs: dict = None,
normalize_kwargs: dict = None,
const_normalize_kwargs: dict = None,
mlp_kwargs: dict = None,
output_embedding: str = None,
use_output_mlp: bool = None,
output_to_tensor: bool = None,
predict_dipole: bool = None,
output_mlp: dict = None,
output_scaling: dict = None,
output_tensor_type: str = None
):
r"""Make 2nd generation `HDNNP <https://arxiv.org/abs/1706.08566>`__ graph network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.HDNNP2nd.model_default_weighted` .
Uses weighted `wACSF <https://arxiv.org/abs/1712.05861>`__ .
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[node_number, coordinates, edge_indices, angle_indices, ...]`
with '...' indicating mask or ID tensors following the template below.
Requires node number for atom-wise neural networks.
%s
**Model outputs**:
The standard output template:
%s
Args:
inputs (list): List of dictionaries unpacked in :obj:`Input`. Order must match model definition.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layer.
has_charge_input (bool): Whether the model needs total charge as input. Default is False.
node_pooling_args (dict): Dictionary of layer arguments unpacked in :obj:`PoolingNodes` layers.
verbose (int): Level of verbosity.
name (str): Name of the model.
w_acsf_ang_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`wACSFAng` layer.
w_acsf_rad_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`wACSFRad` layer.
mlp_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`RelationalMLP` layer.
normalize_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphBatchNormalization` layer.
const_normalize_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`ACSFConstNormalization` layer.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
use_output_mlp (bool): Whether to use the final output MLP. Possibility to skip final MLP.
output_to_tensor (bool): Deprecated in favour of `output_tensor_type` .
predict_dipole (bool): Whether to predict additional dipole based on charges. Default is False.
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers. Default is None.
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
dj = template_cast_list_input(
model_inputs,
input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
mask_assignment=[0, 0, 1, 2] + ([None] if has_charge_input else []),
index_assignment=[None, None, 0, 0] + ([None] if has_charge_input else [])
)
if has_charge_input:
n, x, disjoint_indices, ang_ind, tot_charge, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angle = dj
else:
n, x, disjoint_indices, ang_ind, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angle = dj
tot_charge = None
out = model_disjoint_weighted(
[n, x, disjoint_indices, ang_ind, tot_charge, batch_id_node, count_nodes],
node_pooling_args=node_pooling_args,
w_acsf_ang_kwargs=w_acsf_ang_kwargs,
w_acsf_rad_kwargs=w_acsf_rad_kwargs,
normalize_kwargs=normalize_kwargs,
const_normalize_kwargs=const_normalize_kwargs,
mlp_kwargs=mlp_kwargs,
output_embedding=output_embedding,
use_output_mlp=use_output_mlp,
output_mlp=output_mlp,
predict_dipole=predict_dipole
)
if not isinstance(out, list):
out = [out]
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
# We will only apply scale to first output, i.e. energy.
out_scaled = out[0]
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out_scaled = scaler([out_scaled, n, batch_id_node])
else:
out_scaled = scaler(out_scaled)
out[0] = out_scaled
# Output embedding choice
out = [template_cast_output(
[out_to_cast, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
) for out_to_cast in out]
if len(out) == 1:
out = out[0]
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_model_weighted.__doc__ = make_model_weighted.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)
model_default_behler = {
"name": "HDNNP2nd",
"inputs": [
{"shape": (None,), "name": "node_number", "dtype": "int64"},
{"shape": (None, 3), "name": "node_coordinates", "dtype": "float32"},
{"shape": (None, 2), "name": "edge_indices", "dtype": "int64"},
{"shape": (None, 3), "name": "angle_indices_nodes", "dtype": "int64"},
{"shape": (), "name": "total_nodes", "dtype": "int64"},
{"shape": (), "name": "total_edges", "dtype": "int64"},
{"shape": (), "name": "total_angles", "dtype": "int64"}
],
"input_tensor_type": "padded",
"cast_disjoint_kwargs": {},
"has_charge_input": False,
"g2_kwargs": {"eta": [0.0, 0.3], "rs": [0.0, 3.0], "rc": 10.0, "elements": [1, 6, 16]},
"g4_kwargs": {"eta": [0.0, 0.3], "lamda": [-1.0, 1.0], "rc": 6.0,
"zeta": [1.0, 8.0], "elements": [1, 6, 16], "multiplicity": 2.0},
"normalize_kwargs": {},
"const_normalize_kwargs": None,
"mlp_kwargs": {"units": [64, 64, 64],
"num_relations": 96,
"activation": ["swish", "swish", "linear"]},
"node_pooling_args": {"pooling_method": "sum"},
"verbose": 10,
"output_embedding": "graph", "output_to_tensor": True,
"use_output_mlp": False,
"predict_dipole": False,
"output_mlp": {"use_bias": [True, True], "units": [64, 1],
"activation": ["swish", "linear"]},
"output_tensor_type": "padded",
"output_scaling": None
}
@update_model_kwargs(model_default_behler, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_model_behler(inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
has_charge_input: bool = None,
node_pooling_args: dict = None,
name: str = None,
verbose: int = None,
normalize_kwargs: dict = None,
const_normalize_kwargs: dict = None,
g2_kwargs: dict = None,
g4_kwargs: dict = None,
mlp_kwargs: dict = None,
output_embedding: str = None,
use_output_mlp: bool = None,
predict_dipole: bool = None,
output_to_tensor: bool = None,
output_mlp: dict = None,
output_scaling: dict = None,
output_tensor_type: str = None
):
r"""Make 2nd generation `HDNNP <https://arxiv.org/abs/1706.08566>`__ graph network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.HDNNP2nd.model_default_behler` .
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[node_number, coordinates, edge_indices, angle_indices, ...]`
with '...' indicating mask or ID tensors following the template below.
Requires node number for atom-wise neural networks.
%s
**Model outputs**:
The standard output template:
%s
Args:
inputs (list): List of dictionaries unpacked in :obj:`Input`. Order must match model definition.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layer.
has_charge_input (bool): Whether the model needs total charge as input. Default is False.
node_pooling_args (dict): Dictionary of layer arguments unpacked in :obj:`PoolingNodes` layers.
verbose (int): Level of verbosity.
name (str): Name of the model.
g2_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`ACSFG2` layer.
g4_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`ACSFG4` layer.
normalize_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphBatchNormalization` layer.
const_normalize_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`ACSFConstNormalization` layer.
mlp_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`RelationalMLP` layer.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
use_output_mlp (bool): Whether to use the final output MLP. Possibility to skip final MLP.
predict_dipole (bool): Whether to predict additional dipole based on charges. Default is False.
output_to_tensor (bool): Deprecated in favour of `output_tensor_type` .
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers. Default is None.
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
dj = template_cast_list_input(
model_inputs,
input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
mask_assignment=[0, 0, 1, 2] + ([None] if has_charge_input else []),
index_assignment=[None, None, 0, 0] + ([None] if has_charge_input else [])
)
if has_charge_input:
n, x, disjoint_indices, ang_index, tot_charge, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angle = dj
else:
n, x, disjoint_indices, ang_index, batch_id_node, batch_id_edge, batch_id_angles, node_id, edge_id, angle_id, count_nodes, count_edges, count_angle = dj
tot_charge = None
out = model_disjoint_behler(
[n, x, disjoint_indices, ang_index, tot_charge, batch_id_node, count_nodes],
node_pooling_args=node_pooling_args,
normalize_kwargs=normalize_kwargs,
const_normalize_kwargs=const_normalize_kwargs,
g2_kwargs=g2_kwargs,
g4_kwargs=g4_kwargs,
mlp_kwargs=mlp_kwargs,
output_embedding=output_embedding,
use_output_mlp=use_output_mlp,
output_mlp=output_mlp,
predict_dipole=predict_dipole
)
if not isinstance(out, list):
out = [out]
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
# We will only apply scale to first output, i.e. energy.
out_scaled = out[0]
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out_scaled = scaler([out_scaled, n, batch_id_node])
else:
out_scaled = scaler(out_scaled)
out[0] = out_scaled
# Output embedding choice
out = [template_cast_output(
[out_to_cast, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
) for out_to_cast in out]
if len(out) == 1:
out = out[0]
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_model_behler.__doc__ = make_model_behler.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)
model_default_atom_wise = {
"name": "HDNNP2nd",
"inputs": [
{"shape": (None,), "name": "node_number", "dtype": "int64"},
{"shape": (None, 3), "name": "node_representation", "dtype": "float32"},
{"shape": (), "name": "total_nodes", "dtype": "int64"},
],
"input_tensor_type": "padded",
"has_charge_input": False,
"cast_disjoint_kwargs": {},
"mlp_kwargs": {"units": [64, 64, 64],
"num_relations": 96,
"activation": ["swish", "swish", "linear"]},
"node_pooling_args": {"pooling_method": "sum"},
"verbose": 10,
"output_embedding": "graph", "output_to_tensor": True,
"predict_dipole": False,
"use_output_mlp": False,
"output_mlp": {"use_bias": [True, True], "units": [64, 1],
"activation": ["swish", "linear"]},
"output_tensor_type": "padded",
"output_scaling": None
}
@update_model_kwargs(model_default_atom_wise, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_model_atom_wise(inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
has_charge_input: bool = None,
node_pooling_args: dict = None,
name: str = None,
verbose: int = None,
mlp_kwargs: dict = None,
output_embedding: str = None,
predict_dipole: bool = None,
use_output_mlp: bool = None,
output_to_tensor: bool = None,
output_mlp: dict = None,
output_scaling: dict = None,
output_tensor_type: str = None
):
r"""Make 2nd generation `HDNNP <https://arxiv.org/abs/1706.08566>`__ network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.HDNNP2nd.model_default_atom_wise` .
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[node_number, node_representation, ...]`
with '...' indicating mask or ID tensors following the template below.
Requires node number for atom-wise neural networks.
The representation are given directly to the model as they are expected to be pre-computed.
%s
**Model outputs**:
The standard output template:
%s
Args:
inputs (list): List of dictionaries unpacked in :obj:`Input`. Order must match model definition.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layer.
has_charge_input (bool): Whether the model needs total charge as input. Default is False.
node_pooling_args (dict): Dictionary of layer arguments unpacked in :obj:`PoolingNodes` layers.
verbose (int): Level of verbosity.
name (str): Name of the model.
mlp_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`RelationalMLP` layer.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
use_output_mlp (bool): Whether to use the final output MLP. Possibility to skip final MLP.
output_to_tensor (bool): Deprecated in favour of `output_tensor_type` .
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation.
predict_dipole (bool): Whether to predict additional dipole based on charges. Default is False.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers. Default is None.
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
dj = template_cast_list_input(
model_inputs,
input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
mask_assignment=[0, 0] + ([None] if has_charge_input else []),
index_assignment=[None, None] + ([None] if has_charge_input else [])
)
if has_charge_input:
n, x, tot_charge, batch_id_node, node_id, count_nodes = dj
else:
n, x, batch_id_node, node_id, count_nodes = dj
tot_charge = None
batch_id_edge, edge_id, count_edges = None, None, None
out = model_disjoint_atom_wise(
[n, x, tot_charge, batch_id_node, count_nodes],
node_pooling_args=node_pooling_args,
mlp_kwargs=mlp_kwargs,
output_embedding=output_embedding,
use_output_mlp=use_output_mlp,
output_mlp=output_mlp,
predict_dipole=predict_dipole
)
if not isinstance(out, list):
out = [out]
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
# We will only apply scale to first output, i.e. energy.
out_scaled = out[0]
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out_scaled = scaler([out_scaled, n, batch_id_node])
else:
out_scaled = scaler(out_scaled)
out[0] = out_scaled
# Output embedding choice
out = [template_cast_output(
[out_to_cast, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
) for out_to_cast in out]
if len(out) == 1:
out = out[0]
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_model_atom_wise.__doc__ = make_model_atom_wise.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)
# For default, the weighted ACSF are used, since they do should in principle work for all elements.
make_model = make_model_weighted
model_default = model_default_weighted