-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathMatProjectJdft2dDataset.py
29 lines (22 loc) · 1.29 KB
/
MatProjectJdft2dDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from kgcnn.data.datasets.MatBenchDataset2020 import MatBenchDataset2020
class MatProjectJdft2dDataset(MatBenchDataset2020):
"""Store and process :obj:`MatProjectJdft2dDataset` from `MatBench <https://matbench.materialsproject.org/>`__
database. Name within Matbench: 'matbench_jdft2d'.
Matbench test dataset for predicting exfoliation energies from crystal structure
(computed with the OptB88vdW and TBmBJ functionals). Adapted from the JARVIS DFT database.
For benchmarking w/ nested cross validation, the order of the dataset must be identical to the retrieved data;
refer to the Automatminer/Matbench publication for more details.
* Number of samples: 636
* Task type: regression
* Input type: structure
"""
def __init__(self, reload=False, verbose: int = 10):
r"""Initialize 'matbench_mp_e_form' dataset.
Args:
reload (bool): Whether to reload the data and make new dataset. Default is False.
verbose (int): Print progress or info for processing where 60=silent. Default is 10.
"""
# Use default base class init()
super(MatProjectJdft2dDataset, self).__init__("matbench_jdft2d", reload=reload, verbose=verbose)
self.label_names = "exfoliation_en "
self.label_units = "meV/atom"