Skip to content

Train_lora failed in deepspeed zero 3 #210

@abc8350712

Description

@abc8350712

Package version:

accelerate: 1.4.0
deepspeed: 0.16.4
pytorch:2.5.1+cu124

I use deepspeed to train lora by 7xL20, the config json is as follow:

{
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": 1,
  "gradient_accumulation_steps": "auto",
  "steps_per_print": 100,
  
  "bf16": {
    "enabled": true,
    "loss_scale": 0
  },

  "zero_optimization": {
    "stage": 3,
    "contiguous_gradients": true,
    "overlap_comm": true,
    "offload_optimizer": {
      "device": "cpu",
      "pin_memory": true
    },
    "allgather_partitions": true,
    "allgather_bucket_size": 2e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 2e8
  },

  "activation_checkpointing": {
    "partition_activations": true,
    "cpu_checkpointing": false,  
    "contiguous_memory_optimization": true
  },

  "aio": {
    "block_size": 1e6,
    "queue_depth": 8,
    "single_submit": false,
    "overlap_events": true
  }
}

and i add some code in original train_lora.py

os.environ["NCCL_P2P_DISABLE"] = "1"
os.environ["NCCL_IB_DISABLE"] = "1"
os.environ['NCCL_SOCKET_IFNAME'] = 'eth0'  # Replace with your network interface
os.environ['NCCL_DEBUG'] = 'INFO'

My script to run is

"args": [
                "launch",
                "--mixed_precision=bf16",
                "--num_processes=7",
                "scripts/train_lora.py",
                "--pretrained_model_name_or_path=/home/omadmin/yxd/EasyAnimateV5.1-12b-zh-InP",
                "--train_data_meta=/home/omadmin/yxd/EasyAnimate/datasets/Minimalism/g4_filter.json",
                "--config_path",
                "config/easyanimate_video_v5.1_magvit_qwen.yaml",    
                "--image_sample_size=1024",
                "--video_sample_size=512",
                "--token_sample_size=512",
                "--video_sample_stride=3",
                "--video_sample_n_frames=49",
                "--train_batch_size=1",
                "--video_repeat=1",
                "--gradient_accumulation_steps=1",
                "--dataloader_num_workers=1",
                "--num_train_epochs=100",
                "--checkpointing_steps=100",
                "--learning_rate=1e-05",
                "--seed=42",
                "--low_vram",
                "--output_dir=output_dir",
                "--gradient_checkpointing",
                "--adam_weight_decay=5e-3",
                "--adam_epsilon=1e-10",
                "--vae_mini_batch=1",
                "--max_grad_norm=0.05",
                "--random_hw_adapt",
                "--training_with_video_token_length",
                "--train_mode=inpaint",
                "--loss_type=flow",
                "--rank=256",
                "--network_alpha=128",
               "--use_deepspeed",
               "--random_flip",
               "--motion_sub_loss",
               "--enable_bucket",
               "--random_ratio_crop",
               "--enable_xformers_memory_efficient_attention"

            ],

Howevery it turns out to be

rank1]:     exec(code, run_globals)
[rank1]:   File "scripts/train_lora.py", line 2169, in <module>
[rank1]:     main()
[rank1]:   File "scripts/train_lora.py", line 1854, in main
[rank1]:     encode_prompt(
[rank1]:   File "scripts/train_lora.py", line 223, in encode_prompt
[rank1]:     prompt_embeds = text_encoder(
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
[rank1]:     return self._call_impl(*args, **kwargs)
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
[rank1]:     return forward_call(*args, **kwargs)
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1683, in forward
[rank1]:     inputs_embeds = self.model.embed_tokens(input_ids)
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
[rank1]:     return self._call_impl(*args, **kwargs)
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
[rank1]:     return forward_call(*args, **kwargs)
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/modules/sparse.py", line 190, in forward
[rank1]:     return F.embedding(
[rank1]:   File "/home/omadmin/miniconda3/envs/py310/lib/python3.10/site-packages/torch/nn/functional.py", line 2551, in embedding
[rank1]:     return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
[rank1]: RuntimeError: 'weight' must be 2-D

Zero2 can work, but Zero3 cannot work.
Could you help me to fix this problem?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions