-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdataloader.py
131 lines (115 loc) · 4.24 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import numpy as np
from skimage import io
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import albumentations as A
import albumentations.pytorch as AT
# PyTorch Dataset
class WhalesData(Dataset):
def __init__(self, paths, bbox, mapping_label_id, mapping_pseudo_files_folders, transform, crop=False, test=False):
self.paths = paths
self.bbox = pd.read_csv(bbox)
self.bbox.set_index('new_path', inplace=True)
self.bbox = self.bbox.to_dict(orient='index')
self.mapping_label_id = mapping_label_id
self.mapping_pseudo_files_folders = mapping_pseudo_files_folders
self.transform = transform
self.test = test
self.crop = crop
def __len__(self):
return len(self.paths)
def __getitem__(self, i):
path = self.paths[i]
img = Image.open(path)
img = np.array(img)
if self.crop:
if (path in self.bbox) & ('test' not in path):
x = int(self.bbox[path]['x'])
y = int(self.bbox[path]['y'])
w = int(self.bbox[path]['w'])
h = int(self.bbox[path]['h'])
else:
x, y = 0, 0
w = img.shape[1]
h = img.shape[0]
img = img[y:h, x:w, :]
if type(self.transform) == A.core.composition.Compose:
img = self.transform(image=img)['image']
else:
img = self.transform(img)
if self.test == False:
if 'test' not in path:
folder = path.split('/')[-2]
label = self.mapping_label_id[folder]
else:
folder = self.mapping_pseudo_files_folders[path]
label = self.mapping_label_id[folder]
sample = {
'image': img,
'label': label
}
else:
sample = {
'image': img
}
return sample
# augmentation pipeline for both train and test
def augmentation(image_size, train=True):
max_crop = image_size // 5
if train:
data_transform = A.Compose([
A.Resize(image_size, image_size),
A.Compose(
[
A.OneOf([
A.RandomRain(p=0.1),
A.GaussNoise(mean=15),
A.GaussianBlur(blur_limit=10, p=0.4),
A.MotionBlur(p=0.2)
]),
A.OneOf([
A.RGBShift(p=1.0,
r_shift_limit=(-10, 10),
g_shift_limit=(-10, 10),
b_shift_limit=(-10, 10)
),
A.RandomBrightnessContrast(
brightness_limit=0.3, contrast_limit=0.1, p=1),
A.HueSaturationValue(hue_shift_limit=20, p=1),
], p=0.6),
A.OneOf([
A.CLAHE(clip_limit=2),
A.IAASharpen(),
A.IAAEmboss(),
]),
A.OneOf([
A.IAAPerspective(p=0.3),
A.ElasticTransform(p=0.1)
]),
A.OneOf([
A.Rotate(limit=25, p=0.6),
A.IAAAffine(
scale=0.9,
translate_px=15,
rotate=25,
shear=0.2,
)
], p=1),
A.Cutout(num_holes=1, max_h_size=max_crop, max_w_size=max_crop, p=0.2)],
p=1
),
A.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
AT.ToTensor()
])
else:
data_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
return data_transform