forked from maneatingape/advent-of-code-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday14.rs
184 lines (158 loc) · 5.1 KB
/
day14.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//! # Parabolic Reflector Dish
//!
//! To solve part two we look for a cycle where the dish returns to a previously seen state.
//! By storing each dish and a index in a `HashMap` we can calculate the offset and length of the
//! cycle then use that to find to state at the billionth step.
use crate::util::grid::*;
use crate::util::hash::*;
use crate::util::point::*;
pub struct Input {
width: i32,
height: i32,
rounded: Vec<i16>,
fixed_north: Vec<i16>,
fixed_west: Vec<i16>,
fixed_south: Vec<i16>,
fixed_east: Vec<i16>,
roll_north: Vec<i16>,
roll_west: Vec<i16>,
roll_south: Vec<i16>,
roll_east: Vec<i16>,
}
pub fn parse(input: &str) -> Input {
let inner = Grid::parse(input);
let mut grid = Grid {
width: inner.width + 2,
height: inner.height + 2,
bytes: vec![b'#'; ((inner.width + 2) * (inner.height + 2)) as usize],
};
// Copy
for y in 0..inner.width {
for x in 0..inner.width {
let src = Point::new(x, y);
let dst = Point::new(x + 1, y + 1);
grid[dst] = inner[src];
}
}
let copy = || Grid { width: grid.width, height: grid.height, bytes: vec![0; grid.bytes.len()] };
let mut rounded = Vec::new();
let mut north = copy();
let mut west = copy();
let mut south = copy();
let mut east = copy();
let mut roll_north = Vec::new();
let mut roll_west = Vec::new();
let mut roll_south = Vec::new();
let mut roll_east = Vec::new();
// Rounded
for y in 0..grid.height {
for x in 0..grid.width {
let point = Point::new(x, y);
if grid[point] == b'O' {
rounded.push((grid.width * point.y + point.x) as i16);
}
}
}
// North
for x in 0..grid.width {
for y in 0..grid.height {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_north.push((grid.width * point.y + point.x) as i16);
}
north[point] = (roll_north.len() - 1) as i16;
}
}
// West
for y in 0..grid.height {
for x in 0..grid.width {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_west.push((grid.width * point.y + point.x) as i16);
}
west[point] = (roll_west.len() - 1) as i16;
}
}
// South
for x in 0..grid.width {
for y in (0..grid.height).rev() {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_south.push((grid.width * point.y + point.x) as i16);
}
south[point] = (roll_south.len() - 1) as i16;
}
}
// East
for y in 0..grid.height {
for x in (0..grid.width).rev() {
let point = Point::new(x, y);
if grid[point] == b'#' {
roll_east.push((grid.width * point.y + point.x) as i16);
}
east[point] = (roll_east.len() - 1) as i16;
}
}
Input {
width: grid.width,
height: grid.height,
rounded,
fixed_north: north.bytes,
fixed_west: west.bytes,
fixed_south: south.bytes,
fixed_east: east.bytes,
roll_north,
roll_west,
roll_south,
roll_east,
}
}
pub fn part1(input: &Input) -> i32 {
let Input { width, height, fixed_north, roll_north, .. } = input;
let mut result = 0;
let rounded = &mut input.rounded.clone();
let state = tilt(rounded, fixed_north, roll_north, *width as i16);
for (&a, &b) in input.roll_north.iter().zip(state.iter()) {
for index in (a..b).step_by(input.width as usize) {
let y = (index as i32) / width;
result += height - 2 - y;
}
}
result
}
pub fn part2(input: &Input) -> i32 {
let Input { width, height, .. } = input;
let rounded = &mut input.rounded.clone();
let mut seen = FastMap::with_capacity(100);
// Find cycle
let (start, end) = loop {
tilt(rounded, &input.fixed_north, &input.roll_north, *width as i16);
tilt(rounded, &input.fixed_west, &input.roll_west, 1);
tilt(rounded, &input.fixed_south, &input.roll_south, -(*width) as i16);
let state = tilt(rounded, &input.fixed_east, &input.roll_east, -1);
if let Some(previous) = seen.insert(state, seen.len()) {
break (previous, seen.len());
}
};
let offset = 1_000_000_000 - 1 - start;
let cycle_width = end - start;
let remainder = offset % cycle_width;
let target = start + remainder;
let (state, _) = seen.iter().find(|(_, &i)| i == target).unwrap();
let mut result = 0;
for (&a, &b) in input.roll_east.iter().zip(state.iter()) {
let n = (a - b) as i32;
let y = (a as i32) / width;
result += n * (height - 1 - y);
}
result
}
fn tilt(rounded: &mut [i16], fixed: &[i16], roll: &[i16], direction: i16) -> Vec<i16> {
let mut state = roll.to_vec();
for rock in rounded {
let index = fixed[*rock as usize] as usize;
state[index] += direction;
*rock = state[index];
}
state
}