-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy path07_persistent_memory_mongodb.py
78 lines (68 loc) · 2.46 KB
/
07_persistent_memory_mongodb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
This recipe shows how to store agent sessions in a MongoDB database.
Steps:
1. Run: `pip install openai pymongo agno` to install dependencies
2. Make sure you are running a local instance of mongodb
3. Run: `python cookbook/memory/07_persistent_memory_mongodb.py` to run the agent
"""
import json
from agno.agent import Agent
from agno.memory.agent import AgentMemory
from agno.memory.db.mongodb import MongoMemoryDb
from agno.models.openai import OpenAIChat
from agno.storage.agent.mongodb import MongoDbAgentStorage
from rich.console import Console
from rich.json import JSON
from rich.panel import Panel
# MongoDB connection settings
db_url = "mongodb://localhost:27017"
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
# Store agent sessions in MongoDB
storage=MongoDbAgentStorage(
collection_name="agent_sessions", db_url=db_url, db_name="agno"
),
# Store memories in MongoDB
memory=AgentMemory(
db=MongoMemoryDb(
collection_name="agent_sessions", db_url=db_url, db_name="agno"
),
create_user_memories=True,
create_session_summary=True,
),
# Set add_history_to_messages=true to add the previous chat history to the messages sent to the Model.
add_history_to_messages=True,
# Number of historical responses to add to the messages.
num_history_responses=3,
# The session_id is used to identify the session in the database
# You can resume any session by providing a session_id
# session_id="xxxx-xxxx-xxxx-xxxx",
# Description creates a system prompt for the agent
description="You are a helpful assistant that always responds in a polite, upbeat and positive manner.",
)
console = Console()
def print_chat_history(agent):
# -*- Print history
console.print(
Panel(
JSON(
json.dumps(
[
m.model_dump(include={"role", "content"})
for m in agent.memory.messages
]
),
indent=4,
),
title=f"Chat History for session_id: {agent.session_id}",
expand=True,
)
)
# -*- Create a run
agent.print_response("Share a 2 sentence horror story", stream=True)
# -*- Print the chat history
print_chat_history(agent)
# -*- Ask a follow up question that continues the conversation
agent.print_response("What was my first message?", stream=True)
# -*- Print the chat history
print_chat_history(agent)