-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathapis.py
526 lines (495 loc) · 16.8 KB
/
apis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Any, Union
from typing_extensions import Literal
from cerebrum.utils.communication import Query, Response, send_request, aios_kernel_url
class LLMQuery(Query):
"""
Query class for LLM operations.
This class represents the input structure for performing various LLM actions
such as chatting, using tools, or operating on files.
Attributes:
query_class: Identifier for LLM queries, always set to "llm"
llms: Optional list of LLM configurations with format:
[
{
"name": str, # Name of the LLM (e.g., "gpt-4")
"temperature": float, # Sampling temperature (0.0-2.0)
"max_tokens": int, # Maximum tokens to generate
"top_p": float, # Nucleus sampling parameter (0.0-1.0)
"frequency_penalty": float, # Frequency penalty (-2.0-2.0)
"presence_penalty": float # Presence penalty (-2.0-2.0)
}
]
messages: List of message dictionaries with format:
[
{
"role": str, # One of ["system", "user", "assistant"]
"content": str, # The message content
"name": str, # Optional name for the message sender
"function_call": dict, # Optional function call details
"tool_calls": list # Optional tool call details
}
]
tools: Optional list of available tools with format:
[
{
"name": str, # Tool identifier
"description": str, # Tool description
"parameters": { # Tool parameters schema
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "number"}
},
"required": ["param1"]
}
}
]
action_type: Type of action to perform, one of:
- "chat": Simple conversation
- "tool_use": Using external tools
- "operate_file": File operations
message_return_type: Desired format of the response
Examples:
```python
# Simple chat query
query = LLMQuery(
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is Python?"
}
],
action_type="chat"
)
# Tool use query with specific LLM configuration
query = LLMQuery(
llms=[{
"name": "gpt-4",
"temperature": 0.7,
"max_tokens": 500
}],
messages=[
{
"role": "user",
"content": "Calculate 2 + 2"
}
],
tools=[{
"name": "calculator",
"description": "Performs basic arithmetic operations",
"parameters": {
"type": "object",
"properties": {
"operation": {
"type": "string",
"enum": ["add", "subtract", "multiply", "divide"]
},
"numbers": {
"type": "array",
"items": {"type": "number"}
}
},
"required": ["operation", "numbers"]
}
}],
action_type="tool_use"
)
```
"""
query_class: str = "llm"
llms: Optional[List[Dict[str, Any]]] = Field(default=None)
messages: List[Dict[str, Union[str, Any]]]
tools: Optional[List[Dict[str, Any]]] = Field(default_factory=list)
action_type: Literal["chat", "tool_use", "operate_file"] = Field(default="chat")
message_return_type: Literal["text", "json"] = Field(default="text")
class Config:
arbitrary_types_allowed = True
class LLMResponse(Response):
"""
Response class for LLM operations.
This class represents the output structure after performing LLM actions.
Attributes:
response_class: Identifier for LLM responses, always "llm"
response_message: Generated response text
tool_calls: List of tool calls made during processing, format:
[
{
"name": str, # Tool name
"parameters": dict, # Parameters used
"result": Any # Tool execution result
}
]
finished: Whether processing completed successfully
error: Error message if any
status_code: HTTP status code
Examples:
```python
# Successful chat response
response = LLMResponse(
response_message="Python is a high-level programming language...",
finished=True,
status_code=200
)
# Tool use response with calculator
response = LLMResponse(
response_message=None,
tool_calls=[{
"name": "calculator",
"parameters": {
"operation": "add",
"numbers": [2, 2]
}
}],
finished=True,
status_code=200
)
```
"""
response_class: str = "llm"
response_message: Optional[str] = None
tool_calls: Optional[List[Dict[str, Any]]] = None
finished: bool = False
error: Optional[str] = None
status_code: int = 200
class Config:
arbitrary_types_allowed = True
def llm_chat(
agent_name: str,
messages: List[Dict[str, Any]],
base_url: str = aios_kernel_url,
llms: List[Dict[str, Any]] = None
) -> LLMResponse:
"""
Perform a chat interaction with the LLM.
Args:
agent_name: Name of the agent making the request
messages: List of message dictionaries with format:
[
{
"role": "system"|"user"|"assistant",
"content": str,
"name": str # Optional
}
]
base_url: API base URL
llms: Optional list of LLM configurations
Returns:
LLMResponse containing the generated response
Examples:
```python
response = llm_chat(
"agent1",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Explain quantum computing."
}
],
llms=[{
"name": "gpt-4",
"temperature": 0.7
}]
)
```
"""
query = LLMQuery(
llms=llms,
messages=messages,
tools=None,
action_type="chat"
)
return send_request(agent_name, query, base_url)
def llm_chat_with_json_output(
agent_name: str,
messages: List[Dict[str, Any]],
base_url: str = aios_kernel_url,
llms: List[Dict[str, Any]] = None
) -> LLMResponse:
"""
Perform a chat interaction with the LLM.
Args:
agent_name: Name of the agent making the request
messages: List of message dictionaries with format:
[
{
"role": "system"|"user"|"assistant",
"content": str,
"name": str # Optional
}
]
base_url: API base URL
llms: Optional list of LLM configurations
Returns:
LLMResponse containing the generated response
Examples:
```python
response = llm_chat(
"agent1",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Explain quantum computing."
}
],
llms=[{
"name": "gpt-4",
"temperature": 0.7
}]
)
```
"""
query = LLMQuery(
llms=llms,
messages=messages,
tools=None,
action_type="chat",
message_return_type="json"
)
return send_request(agent_name, query, base_url)
def llm_call_tool(
agent_name: str,
messages: List[Dict[str, Any]],
tools: List[Dict[str, Any]],
base_url: str = aios_kernel_url,
llms: List[Dict[str, Any]] = None
) -> LLMResponse:
"""
Use LLM to call tools based on user input.
Args:
agent_name: Name of the agent making the request
messages: List of message dictionaries with format:
[
{
"role": "system"|"user"|"assistant",
"content": str,
"name": str, # Optional
"tool_calls": [ # Optional, for assistant messages
{
"tool": str, # Tool name
"parameters": dict # Tool parameters
}
]
}
]
tools: List of available tools with format:
[
{
"name": str, # Tool identifier
"description": str, # Tool description
"parameters": { # JSON Schema for parameters
"type": "object",
"properties": {...},
"required": [...]
}
}
]
base_url: API base URL
llms: Optional list of LLM configurations with format:
[
{
"name": str, # e.g., "gpt-4"
"temperature": float, # 0.0-2.0
"max_tokens": int
}
]
Returns:
LLMResponse containing tool calls and results
Examples:
```python
# Calculator tool example
response = llm_call_tool(
"agent1",
messages=[{
"role": "user",
"content": "What is 15 * 7?"
}],
tools=[{
"name": "calculator",
"description": "Performs basic arithmetic",
"parameters": {
"type": "object",
"properties": {
"operation": {
"type": "string",
"enum": ["multiply"]
},
"numbers": {
"type": "array",
"items": {"type": "number"}
}
}
}
}]
)
# Weather and summary example
response = llm_call_tool(
"agent1",
messages=[{
"role": "user",
"content": "What's the weather like and give me a summary?"
}],
tools=[
{
"name": "weather_api",
"description": "Gets current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
}
}
},
{
"name": "text_summarizer",
"description": "Summarizes text",
"parameters": {
"type": "object",
"properties": {
"text": {"type": "string"},
"max_length": {"type": "integer"}
}
}
}
],
llms=[{
"name": "gpt-4",
"temperature": 0.7
}]
)
```
"""
query = LLMQuery(
llms=llms,
messages=messages,
tools=tools,
action_type="tool_use"
)
return send_request(agent_name, query, base_url)
def llm_operate_file(
agent_name: str,
messages: List[Dict[str, Any]],
tools: List[Dict[str, Any]],
base_url: str = aios_kernel_url,
llms: List[Dict[str, Any]] = None
) -> LLMResponse:
"""
Use LLM to perform file operations.
Args:
agent_name: Name of the agent making the request
messages: List of message dictionaries with format:
[
{
"role": "system"|"user"|"assistant",
"content": str,
"name": str, # Optional
"file_operations": [ # Optional, for assistant messages
{
"operation": str, # e.g., "write", "modify"
"file_path": str,
"content": str
}
]
}
]
tools: List of file operation tools with format:
[
{
"name": str, # e.g., "file_writer", "code_modifier"
"description": str,
"parameters": {
"type": "object",
"properties": {
"operation": {"type": "string"},
"file_path": {"type": "string"},
"content": {"type": "string"}
}
}
}
]
base_url: API base URL
llms: Optional list of LLM configurations
Returns:
LLMResponse containing file operation results
Examples:
```python
# Create a Python script
response = llm_operate_file(
"agent1",
messages=[{
"role": "user",
"content": "Create a script that sorts a list of numbers"
}],
tools=[{
"name": "file_writer",
"description": "Creates or modifies files",
"parameters": {
"type": "object",
"properties": {
"file_path": {"type": "string"},
"content": {"type": "string"},
"format": {"type": "string", "enum": ["python", "text"]}
}
}
}]
)
# Modify existing code with error handling
response = llm_operate_file(
"agent1",
messages=[
{
"role": "system",
"content": "You are a code improvement assistant."
},
{
"role": "user",
"content": "Add error handling to the sort function in sort.py"
}
],
tools=[{
"name": "code_modifier",
"description": "Modifies existing code files",
"parameters": {
"type": "object",
"properties": {
"file_path": {"type": "string"},
"modifications": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {"type": "string", "enum": ["add", "modify", "delete"]},
"location": {"type": "string"},
"content": {"type": "string"}
}
}
}
}
}
}],
llms=[{
"name": "gpt-4",
"temperature": 0.3 # Lower temperature for code modifications
}]
)
```
"""
query = LLMQuery(
llms=llms,
messages=messages,
tools=tools,
action_type="operate_file"
)
return send_request(agent_name, query, base_url)