-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
194 lines (151 loc) · 7.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#import OpenCV module
import cv2
#import os module for reading training data directories and paths
import os
#import numpy to convert python lists to numpy arrays as
#it is needed by OpenCV face recognizers
import numpy as np
#there is no label 0 in our training data so subject name for index/label 0 is empty
subjects=["","anonym","anonym1","anonym2","cwang","doraj"]
##### Prepare training data
# Preparing data step can be further divided into following sub-steps.
#
# 1. Read all the folder names of subjects/persons provided in training data folder. So for example, in this tutorial we have folder names: `s1, s2`.
# 2. For each subject, extract label number. **Do you remember that our folders have a special naming convention?** Folder names follow the format `sLabel` where
# `Label` is an integer representing the label we have assigned to that subject. So for example, folder name `s1` means that the subject has label 1, s2 means
# subject label is 2 and so on. The label extracted in this step is assigned to each face detected in the next step.
# 3. Read all the images of the subject, detect face from each image.
# 4. Add each face to faces vector with corresponding subject label (extracted in above step) added to labels vector.
#function to detect face using OpenCV
def detect_face(img):
#convert the test image to gray image as opencv face detector expects gray images
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#load OpenCV face detector, I am using Haar which is accurate
#there is also a more fast but less accurate LBP classifier
face_cascade = cv2.CascadeClassifier('C:\\Users\\nic 005\\Downloads\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_default.xml')
#let's detect multiscale (some images may be closer to camera than others) images
#result is a list of faces
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
#if no faces are detected then return original img
if (len(faces) == 0):
return None, None
#under the assumption that there will be only one face,
#extract the face area
(x, y, w, h) = faces[0]
#return only the face part of the image
return gray[y:y+w, x:x+h], faces[0]
#this function will read all persons' training images, detect face from each image
#and will return two lists of exactly same size, one list
# of faces and another list of labels for each face. Refer to steps given above to understand the steps..
def prepare_training_data(data_folder_path):
#------STEP-1--------
#get the directories (one directory for each subject) in data folder
dirs = os.listdir(data_folder_path)
#list to hold all subject faces
faces = []
#list to hold labels for all subjects
labels = []
k=1
#let's go through each directory and read images within it
for dir_name in dirs:
#------STEP-2--------
#extract label number of subject from dir_name
#format of dir name = slabel
#, so removing letter 's' from dir_name will give us label
label = k
#build path of directory containin images for current subject subject
#sample subject_dir_path = "training-data/s1"
subject_dir_path = data_folder_path + "//" + dir_name
#get the images names that are inside the given subject directory
subject_images_names = os.listdir(subject_dir_path)
#------STEP-3--------
#go through each image name, read image,
#detect face and add face to list of faces
for image_name in subject_images_names:
#ignore system files like .DS_Store
# if image_name.startswith("."):
# continue
#build image path
#sample image path = training-data/s1/1.pgm
image_path = subject_dir_path + "//" + image_name
#read image
image = cv2.imread(image_path)
#display an image window to show the image
cv2.imshow("Training on image...", cv2.resize(image, (400, 500)))
cv2.waitKey(100)
#detect face
face, rect = detect_face(image)
#------STEP-4--------
#for the purpose of this tutorial
#we will ignore faces that are not detected
if face is not None:
#add face to list of faces
faces.append(face)
#add label for this face
labels.append(label)
k=k+1
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
return faces, labels
#let's first prepare our training data
#data will be in two lists of same size
#one list will contain all the faces
#and other list will contain respective labels for each face
print("Preparing data...")
faces, labels = prepare_training_data("C:\\Users\\nic 005\\Desktop\\face_recognition\\db\\training")
print("Data prepared")
#print total faces and labels
print("Total faces: ", len(faces))
print("Total labels: ", len(labels))
print(labels)
# ### Train Face Recognizer
# As we know, OpenCV comes equipped with three face recognizers.
#
# 1. EigenFace Recognizer: This can be created with 'cv2.face.createEigenFaceRecognizer()'
# 2. FisherFace Recognizer: This can be created with 'cv2.face.createFisherFaceRecognizer()'
# 3. Local Binary Patterns Histogram (LBPH): This can be created with 'cv2.face.LBPHFisherFaceRecognizer()'
#
#create our LBPH face recognizer
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
#train our face recognizer of our training faces
face_recognizer.train(faces, np.array(labels))
#function to draw rectangle on image
#according to given (x, y) coordinates and
#given width and heigh
def draw_rectangle(img, rect):
(x, y, w, h) = rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
#function to draw text on given image starting from
#passed (x, y) coordinates.
def draw_text(img, text, x, y):
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
def predict(test_img):
#make a copy of the image as we don't want to chang original image
img = test_img.copy()
#detect face from the image
face, rect = detect_face(img)
#predict the image using our face recognizer
label, confidence = face_recognizer.predict(face)
#get name of respective label returned by face recognizer
label_text = subjects[label[0]]
#draw a rectangle around face detected
draw_rectangle(img, rect)
#draw name of predicted person
draw_text(img, label_text, rect[0], rect[1]-5)
return img
print("Predicting images...")
#load test images
test_img1 = cv2.imread("db\\testing\\anonym.20.jpg")
#test_img2 = cv2.imread("test-data/test2.jpg")
#perform a prediction
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
print("Prediction complete")
#display both images
cv2.imshow(subjects[1], cv2.resize(predicted_img1, (400, 500)))
cv2.imshow(subjects[2], cv2.resize(predicted_img2, (400, 500)))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()