-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.py
142 lines (107 loc) · 6.4 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
from typing import Tuple, Optional
import numpy as np
from .miscellaneous_math import Math
class Kernel:
def __call__(self, x_matrix: np.ndarray, y_matrix: Optional[np.ndarray] = None) -> np.ndarray:
"""
Computes the covariances under the kernel between all vectors in `x_matrix` and `y_matrix`, or between all pairs in `x_matrix`.
:param x_matrix: A matrix of size (number of vectors, number of dimensions).
:param y_matrix: A matrix of size (number of vectors, number of dimensions).
:return: A matrix of size (number of points in `x_matrix`, number of points in `y_matrix`), or a squared matrix of number of points in `x_matrix`.
"""
raise NotImplementedError
def calculate_input_gradients(self, x_matrix: np.ndarray, y_matrix: np.ndarray) -> np.ndarray:
"""
Calculates the gradients of the kernel function with respect to each vector dimension of `x_matrix`.
:param x_matrix: A matrix of size (number of vectors, number of dimensions).
:param y_matrix: A matrix of size (number of vectors, number of dimensions).
:return: A three-dimensional tensor of size (number of points in `x_matrix`, number of points in `y_matrix`, number of dimensions) with the derivatives.
"""
raise NotImplementedError
def calculate_hyperparameter_gradients(self, matrix: np.ndarray) -> np.ndarray:
"""
Calculates the gradients of the kernel evaluates on `matrix` with respect to the hyperparameters.
We only worry about the case where we compute the kernels with a single matrix (all the combinations of `matrix`)
:param matrix: A matrix of size (number of vectors, number of dimensions).
:return: A three-dimensional tensor of size (number of vectors, number of vectors, number of hyperparameters) with the derivatives.
"""
raise NotImplementedError
def get_hyperparameters(self) -> np.ndarray:
"""
Obtains a vector representation of the hyperparameters values.
:return: A vector of hyperparameter values.
"""
raise NotImplementedError
def get_hyperparameter_bounds(self) -> np.ndarray:
"""
Obtains the bounds for each hyperparameter.
Must be aligned with `get_hyperparameters`.
:return: A matrix of size (number of hyperparameters, 2) with the lower and upper bounds for each hyperparameter.
"""
raise NotImplementedError
@staticmethod
def from_hyperparameters(hyperparameters: np.ndarray) -> 'Kernel':
"""
Creates a kernel from a vector representing hyperparameters.
:hyperparameters: A vector of hyperparameter values.
:return: A subclass of `Kernel`.
"""
raise NotImplementedError
class Matern(Kernel):
def __init__(self, length_scales: np.ndarray, constant: Optional[float] = None, bounds: Optional[Tuple[float, float]] = None):
"""
An ARD Matern 3/2 kernel.
:param length_scales: A vector with the length scale for each input dimension.
:param constant: A constant value multiplying the kernel
:param bounds: The minimum and maximum value the hyperparameters can take.
"""
self.length_scales = length_scales
self.constant = constant if constant else 1.0
self.bounds = bounds if bounds else (1e-5, 1e5)
def __call__(self, x_matrix: np.ndarray, y_matrix: Optional[np.ndarray] = None) -> np.ndarray:
assert x_matrix.shape[1] == self.length_scales.size and (y_matrix is None or y_matrix.shape[1] == self.length_scales.size)
x_scaled = x_matrix / self.length_scales
y_scaled = y_matrix / self.length_scales if y_matrix is not None else x_scaled
distances = Math.euclidean(x_scaled, y_scaled)
k_matrix = distances * math.sqrt(3)
k_matrix = self.constant * (1. + k_matrix) * np.exp(-k_matrix)
return k_matrix
def calculate_input_gradients(self, x_matrix: np.ndarray, y_matrix: np.ndarray) -> np.ndarray:
scaled_distances = Math.euclidean(x_matrix / self.length_scales, y_matrix / self.length_scales)
scaled_distance_gradients = Math.subtractions(x_matrix, y_matrix) / (self.length_scales ** 2)
kernel_derivative = -3 * self.constant * np.exp(-np.sqrt(3) * scaled_distances)
kernel_derivative = kernel_derivative[:, :, np.newaxis] * scaled_distance_gradients
return kernel_derivative
def _calculate_constant_gradient(self, matrix: np.ndarray) -> np.ndarray:
"""
Calculates the derivative of the kernel evaluated on matrix with respect to the kernel constant.
:param matrix: A matrix of size (number of vectors, number of dimensions).
:return: A squared matrix of size (number of vectors, number of vectors).
"""
scaled = matrix / self.length_scales
distances = Math.euclidean(scaled, scaled)
gradient = distances * math.sqrt(3)
gradient = (1. + gradient) * np.exp(-gradient)
return gradient
def _calculate_length_scale_gradient(self, matrix: np.ndarray) -> np.ndarray:
"""
Calculates the derivative of the kernel evaluated on matrix with respect to each scale length.
:param matrix: A matrix of size (number of vectors, number of dimensions).
:return: A three-dimensional tensor of size (number of vectors, number of vectors, number of vector dimensions).
"""
distances = (matrix[:, np.newaxis, :] - matrix[np.newaxis, :, :]) ** 2 / (self.length_scales ** 2)
derivative = self.constant * 3 * distances * np.exp(-np.sqrt(3 * distances.sum(-1)))[..., np.newaxis]
return derivative
def calculate_hyperparameter_gradients(self, matrix: np.ndarray) -> np.ndarray:
assert matrix.shape[1] == self.length_scales.size
constant_derivative = self._calculate_constant_gradient(matrix)
length_scale_derivative = self._calculate_length_scale_gradient(matrix)
return np.concatenate((constant_derivative[..., np.newaxis], length_scale_derivative), axis=2)
def get_hyperparameters(self) -> np.ndarray:
return np.concatenate(([self.constant], self.length_scales))
def get_hyperparameter_bounds(self) -> np.ndarray:
return np.tile(self.bounds, (self.length_scales.size + 1, 1))
@staticmethod
def from_hyperparameters(hyperparameters) -> 'Matern':
return Matern(hyperparameters[1:], hyperparameters[0])