-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharduino_alu_tester.ino
226 lines (196 loc) · 6.73 KB
/
arduino_alu_tester.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
* Arduino program for testing ALU from Ben Eater's 8-bit computer. Iterates through all numbers on both registers and validates ALU output.
* Note: doesn't currently check any flags or carry out because I ran out of pins on my Arduino Nano.
*
* Requires Arduino with at least 12 data pins (not including serial pins) - tested with Arduino Nano. Pin definitions are at top of source file.
*
* Requires two 8-bit shift registers to handle writing to registers and configuring register input flags and ALU sub flag. When writing to registers, you can either connect to bus if register inputs are connected to bus (make sure transceiver output is disabled so it's not writing to bus as well) or just connect to inputs of both registers.
*
* Bit shift register 1:
* - Qa-Qh => LSB of register A/B input (Qa) through MSB of register A/B input (Qh)
* - Qh' => Chained to bit shift register 2
* - OE => Qg of shift register 2
*
* Bit shift register 2:
* - Qa => IE for register A
* - Qb => IE for register B
* - Qc => SU flag for ALU to control subtraction
* - Qd => OUT for register A
* - Qe => OUT for register B
* - Qf => OUT for ALU
* - Qg => shift out for register 1
*
* Outputs of ALU are connected directly to Arduino data pins. Note: my ALU output isn't connected to common bus with registers. If your's is, make sure the transceiver is disabled so it's not interfering with inputs.
*/
// Pins for driving bit shift registers
#define PIN_DATA 2
#define PIN_SRCLK 3
#define PIN_RCLK 4
// Pin for driving register clock
#define PIN_REGCLK 13
// How long in ms to delay between number outputs. Runs fine at 0 for quick testing (LSB LEDs likely won't flash). Looks "better" with a slight delay to actually show what's going on.
#define OUTPUT_DELAY 0
//#define OUTPUT_DELAY 20
// Pins that are connected to ALU output
#define PIN_IN_LSB 5
#define PIN_IN_MSB 12
#define A_IN_OFF 1
#define B_IN_OFF 2
#define SUB_ON 4
#define A_OUT_OFF 8
#define B_OUT_OFF 16
#define ALU_OUT_OFF 32
#define SHIFT_OUT_OFF 64
#define DEFAULT_CONTROL (A_IN_OFF | B_IN_OFF | A_OUT_OFF | B_OUT_OFF | ALU_OUT_OFF | SHIFT_OUT_OFF) // 0b01111011
// If true, print out every calculation; if false, only print out errors
#define DEBUG true
// If true, halts on bad calculation; if false, continues
#define STOP_ON_ERROR true
#define TEST_ADDITION true
#define TEST_SUBTRACTION true
bool stop = false;
char buf[30];
void setup() {
Serial.begin(57600);
// Set pins for bit shift registers to output
pinMode(PIN_DATA, OUTPUT);
pinMode(PIN_SRCLK, OUTPUT);
pinMode(PIN_RCLK, OUTPUT);
pinMode(PIN_REGCLK, OUTPUT);
// Set pins for reading ALU to input
for (int i = PIN_IN_LSB; i <= PIN_IN_MSB; i++) {
pinMode(i, INPUT);
}
// Set everything low to start
digitalWrite(PIN_SRCLK, LOW);
digitalWrite(PIN_RCLK, LOW);
digitalWrite(PIN_REGCLK, LOW);
// Clear both registers
outputNumber(0, DEFAULT_CONTROL - A_IN_OFF - B_IN_OFF - SHIFT_OUT_OFF);
}
// Sends a number to a register
void outputNumber(int number, int control) {
// Push out active register and add/sub settings
shiftOut(PIN_DATA, PIN_SRCLK, MSBFIRST, control);
// Push out number
shiftOut(PIN_DATA, PIN_SRCLK, MSBFIRST, number);
// Pulse output clock to make data available
digitalWrite(PIN_RCLK, LOW);
digitalWrite(PIN_RCLK, HIGH);
digitalWrite(PIN_RCLK, LOW);
// Pulse register clock to bring in data
pulseClock();
// Delay before next output
delay(OUTPUT_DELAY);
}
// Pulse register clock to bring in data from "bus"
void pulseClock() {
digitalWrite(PIN_REGCLK, HIGH);
digitalWrite(PIN_REGCLK, LOW);
}
// Read 8-bit number from ALU
int readAnswer() {
int answer = 0;
for (int i = PIN_IN_MSB; i >= PIN_IN_LSB; i--) {
answer = (answer << 1) | digitalRead(i);
}
return answer;
}
// Outputs aNumber and bNumber to A and B registers and validates ALU produces correct solution
bool verifyAddition(int aNumber, int bNumber) {
outputNumber(aNumber, DEFAULT_CONTROL - A_IN_OFF - SHIFT_OUT_OFF);
outputNumber(bNumber, DEFAULT_CONTROL - B_IN_OFF - SHIFT_OUT_OFF);
outputNumber(0, DEFAULT_CONTROL - SHIFT_OUT_OFF);
outputNumber(0, DEFAULT_CONTROL);
outputNumber(0, DEFAULT_CONTROL - ALU_OUT_OFF);
int answer = readAnswer();
int solution = (aNumber + bNumber) & 255;
if (answer != solution) {
sprintf(buf, "Error: %i + %i <> %i (%i)", aNumber, bNumber, answer, solution);
Serial.println(buf);
return false;
} else {
#if (DEBUG)
sprintf(buf, "%i + %i = %i", aNumber, bNumber, answer);
Serial.println(buf);
#endif
}
return true;
}
// Outputs aNumber and bNumber to A and B registers and validates ALU produces correct solution
bool verifySubtraction(int aNumber, int bNumber) {
outputNumber(aNumber, DEFAULT_CONTROL - A_IN_OFF - SHIFT_OUT_OFF + SUB_ON);
outputNumber(bNumber, DEFAULT_CONTROL - B_IN_OFF - SHIFT_OUT_OFF + SUB_ON);
outputNumber(0, DEFAULT_CONTROL - SHIFT_OUT_OFF + SUB_ON);
outputNumber(0, DEFAULT_CONTROL + SUB_ON);
outputNumber(0, DEFAULT_CONTROL - ALU_OUT_OFF + SUB_ON);
signed char answer = readAnswer();
signed char bNumber2 = bNumber;
signed char solution = aNumber - bNumber2;
if (answer != solution) {
sprintf(buf, "Error: %i - %i <> %i (%i)", aNumber, bNumber2, answer, solution);
Serial.println(buf);
return false;
} else {
#if (DEBUG)
sprintf(buf, "%i - %i = %i", aNumber, bNumber2, answer);
Serial.println(buf);
#endif
}
return true;
}
void loop() {
if (stop) {
return;
}
#if (TEST_ADDITION)
#if (!DEBUG)
Serial.println("Addition");
#endif
// Loop through all iterations of [0-255] + [0-255] and verify addition
for (int aNumber = 0; aNumber < 256; aNumber++) {
for (int bNumber = 0; bNumber < 256; bNumber++) {
if (!verifyAddition(aNumber, bNumber)) {
#if (STOP_ON_ERROR)
stop = true;
return;
#endif
}
}
#if (!DEBUG)
Serial.print(".");
if (aNumber && aNumber % 50 == 0) {
Serial.println(aNumber);
}
#endif
}
#if (!DEBUG)
Serial.println(" done");
#endif
#endif
#if (TEST_SUBTRACTION)
#if (!DEBUG)
Serial.println("\nSubtraction");
#endif
// Loop through all iterations of [0-255] + [0-255] and verify subtraction
for (int aNumber = 0; aNumber < 256; aNumber++) {
for (int bNumber = 0; bNumber < 256; bNumber++) {
if (!verifySubtraction(aNumber, bNumber)) {
#if (STOP_ON_ERROR)
stop = true;
return;
#endif
}
}
#if (!DEBUG)
Serial.print(".");
if (aNumber && aNumber % 50 == 0) {
Serial.println(aNumber);
}
#endif
}
#if (!DEBUG)
Serial.println(" done");
#endif
#endif
}