-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
235 lines (211 loc) · 9.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#coding:utf-8
import sys
from sklearn import datasets
from sklearn.svm import SVC,LinearSVC
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.externals import joblib
import numpy as np
import keras
from keras.models import Sequential,Model
from keras.preprocessing import sequence
from keras.layers import Embedding,Dense,Dropout,Activation,Flatten,LSTM,Reshape,ConvLSTM2D,SimpleRNN,MaxPooling1D,merge,Input,TimeDistributed
from keras.layers.merge import concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.constraints import nonneg
from keras.wrappers.scikit_learn import KerasRegressor
from keras.optimizers import Adam,Adagrad,RMSprop
from keras import backend as K
def train():
data = datasets.load_svmlight_file("./train.data")
X = data[0]
Y = data[1]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,random_state=42)
model = LinearSVC(random_state=0)
model.fit(X_train, Y_train)
test_pred = model.predict(X_test)
train_pred = model.predict(X_train)
#对每个类别分别算pr
#for c in (1,2,3,4):
#c_index = []
#for i in range(len(Y_train)):
# if Y_train[i] == c:
# c_index.append(i)
#tmp_y_train = Y_train[[c_index]]
#tmp_train_pred = train_pred[[c_index]]
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_train,train_pred, labels=[0,1,2,3])
for i in range(4):
#print("svm train pr:%f %f" % (precision[i], recall[i]))
print("svm train f1:%f" % (2 * precision[i] * recall[i] / (precision[i] + recall[i] + 0.0001)))
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_test, test_pred, labels=[0,1,2,3])
for i in range(4):
#print("svm test pr:%f %f" % (precision[i], recall[i]))
print("svm test f1:%f" % (2 * precision[i] * recall[i] / (precision[i] + recall[i] + 0.0001)))
lr_model = LogisticRegression(penalty='l2',
tol=0.0001,
C=0.01,
solver='lbfgs',
class_weight={1:8.0,2:5.0,3:3.0,4:1.0},
#class_weight='balanced',
multi_class='multinomial')
lr_model.fit(X_train, Y_train)
test_pred = lr_model.predict(X_test)
train_pred = lr_model.predict(X_train)
#对每个类别分别算pr
#for c in (1,2,3,4):
#c_index = []
#for i in range(len(Y_train)):
# if Y_train[i] == c:
# c_index.append(i)
#tmp_y_train = Y_train[[c_index]]
#tmp_train_pred = train_pred[[c_index]]
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_train,train_pred, labels=[0,1,2,3])
for i in range(4):
print("lr train pr:%f %f" % (precision[i], recall[i]))
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_test, test_pred, labels=[0,1,2,3])
for i in range(4):
print("lr test pr:%f %f" % (precision[i], recall[i]))
#为了避免划分train和test带来的特征损失,导致过不了sklearn的特征数检查这个坑爹设计,合并后训练模型,还要加上n_features这个选项,因为特征shape被csr指定了,又是个大坑
lr_model.fit(X, Y)
joblib.dump(lr_model, "lr.model")
all_pred = lr_model.predict(X)
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y,all_pred, labels=[0,1,2,3])
for i in range(4):
print("all pr:%f %f" % (precision[i], recall[i]))
submit_data = datasets.load_svmlight_file("./submit.data", n_features=X.shape[1])
X_submit = submit_data[0]
submit_pred = lr_model.predict(X_submit)
with open("submit_data_index") as f, open("submit_result", "w") as f1:
for pred in submit_pred:
if pred == 0:
pred = '春'
elif pred == 1:
pred = '夏'
elif pred == 2:
pred = '秋'
else:
pred = '冬'
f1.write(str(pred) + " " + f.readline())
return
def train_lstm():
#data = datasets.load_svmlight_file("./train_lstm.data")
#X = data[0]
#Y = data[1]
data = np.genfromtxt('train_lstm.data', delimiter=',', dtype=np.int32)
X = data[:,1:]
Y = data[:,0]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,random_state=42)
#对每个类别分别算pr
#for c in (1,2,3,4):
#c_index = []
#for i in range(len(Y_train)):
# if Y_train[i] == c:
# c_index.append(i)
#tmp_y_train = Y_train[[c_index]]
#tmp_train_pred = train_pred[[c_index]]
#model = Sequential()
#model.add(Embedding(input_dim=int(np.max(X_train))+1,output_dim=10,input_length=X_train.shape[1]))
#model.add(LSTM(6,return_sequences=False))
#model.add(MaxPooling1D(pool_size=2, strides=None))
#model.add(ConvLSTM2D(5, kernel_size=2, strides=1))
#model.add(Flatten())
#model.add(SimpleRNN(5,return_sequences=False))
#model.add(Dense(4))
#model.add(Activation('softmax'))
#mypotim=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
#-----------------------------------
#model = Sequential()
#model.add(Embedding(int(np.max(X_train))+1, 100, input_length=X_train.shape[1]))
#model.add(LSTM(10, dropout=0.3, recurrent_dropout=0.2, return_sequences=True))
#model.add(LSTM(10, dropout=0.3, recurrent_dropout=0.2, go_backwards=True))
#model.add(Dense(4, activation='softmax'))
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['mae'])
#-----------------------------------
Y_train = Y_train.reshape(Y_train.shape[0],1).tolist()
Y_test = Y_test.reshape(Y_test.shape[0],1).tolist()
X_train = keras.preprocessing.sequence.pad_sequences(X_train, value=0.)
X_test = keras.preprocessing.sequence.pad_sequences(X_test, value=0.)
Y_train = keras.preprocessing.sequence.pad_sequences(Y_train, value=0.)
Y_test = keras.preprocessing.sequence.pad_sequences(Y_test, value=0.)
#指定dim不指定nsamples,但是python不能写(,dim)的形式,只能写(dim,)的形式
sequence = Input(shape=(X_train.shape[1],), dtype='int32')
embeded = Embedding(int(np.max(X_train))+1, 100, input_length=X_train.shape[1])(sequence)
forwards = LSTM(10, dropout=0.3, recurrent_dropout=0.1)(embeded)
backwards = LSTM(10, dropout=0.3, recurrent_dropout=0.1,go_backwards=True)(embeded)
merged = concatenate([forwards, backwards], axis=-1)
after_dp = Dropout(0.2)(merged)
output = Dense(4, activation='softmax')(after_dp)
model = Model(input=sequence, output=output)
##bug 在这里,loss函数必须是sparse_categorical_crossentropy?
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['mae'])
#model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['mae'])
#model.compile(loss='mean_squared_error', optimizer=mypotim, metrics=["mae"])
model.fit(X_train, Y_train, batch_size=100, epochs=60, shuffle=True, verbose=True,validation_split=0.1)
#inp = model.input
#outputs = [model.layers[0]]
#functors = [K.function([inp]+ [K.learning_phase()], [out]) for out in outputs]
#layer_outs = [func([X_train, 1.]) for func in functors]
#print(layer_outs)
#get_3rd_layer_output = K.function([model.layers[0].input],
# [model.layers[0].output])
#layer_output = get_3rd_layer_output([X])[0][0]
#print(layer_output)
score = model.evaluate(X_test, Y_test, batch_size=100)
print("mae:%f" % score[1])
test_pred = model.predict(X_test)
train_pred = model.predict(X_train)
print(train_pred)
train_pred = train_pred.tolist()
train_pred_label = []
for l in train_pred:
mm = 0
la = 0
for j in range(4):
if l[j] > mm:
la = j
mm = l[j]
train_pred_label.append(la)
test_pred = test_pred.tolist()
test_pred_label = []
for l in test_pred:
mm = 0
la = 0
for j in range(4):
if l[j] > mm:
la = j
mm = l[j]
test_pred_label.append(la)
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_train,train_pred_label, labels=[0,1,2,3])
for i in range(4):
#print("lstm train pr:%f %f" % (precision[i], recall[i]))
print("lstm train f1:%f" % (2 * precision[i] * recall[i] / (precision[i] + recall[i])))
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(Y_test, test_pred_label, labels=[0,1,2,3])
for i in range(4):
#print("lstm test pr:%f %f" % (precision[i], recall[i]))
print("lstm test f1:%f" % (2 * precision[i] * recall[i] / (precision[i] + recall[i])))
submit_data = np.genfromtxt('submit_lstm.data', delimiter=',', dtype=np.int32)
X_submit = submit_data
submit_pred = model.predict(X_submit)
submit_pred = submit_pred.tolist()
with open("submit_data_index_lstm") as f, open("submit_result_lstm", "w") as f1:
for l in submit_pred:
mm = 0
la = 0
for j in range(4):
if l[j] > mm:
la = j
mm = l[j]
if la == 0:
pred = '春'
elif la == 1:
pred = '夏'
elif la == 2:
pred = '秋'
else:
pred = '冬'
f1.write(str(pred) + " " + f.readline())
return
if __name__ == "__main__":
#train()
train_lstm()