|
12 | 12 | "\n",
|
13 | 13 | "Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.\n",
|
14 | 14 | "\n",
|
15 |
| - "<img src=\"images/rnn_unit.png\" width=500/>" |
| 15 | + "<img src=\"images/rnn_unit.png\" width=\"500\"/>" |
16 | 16 | ]
|
17 | 17 | },
|
18 | 18 | {
|
|
21 | 21 | "source": [
|
22 | 22 | "A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor. Consider what happens if we unroll the above loop:\n",
|
23 | 23 | " \n",
|
24 |
| - "<img src=\"images/rnn_units.png\" width=500/>" |
| 24 | + "<img src=\"images/rnn_units.png\" width=\"500\"/>" |
25 | 25 | ]
|
26 | 26 | },
|
27 | 27 | {
|
|
30 | 30 | "source": [
|
31 | 31 | "As demonstrated in the book, recurrent neural networks may be connected in many different ways: sequences in the input, the output, or in the most general case both.\n",
|
32 | 32 | "\n",
|
33 |
| - "<img src=\"images/rnn_connections.png\" width=700/>" |
| 33 | + "<img src=\"images/rnn_connections.png\" width=\"700\"/>" |
34 | 34 | ]
|
35 | 35 | },
|
36 | 36 | {
|
|
303 | 303 | "\n",
|
304 | 304 | "Autoencoders are an unsupervised learning technique in which we leverage neural networks for the task of representation learning. It works by compressing the input into a latent-space representation, to do transformations on the data. \n",
|
305 | 305 | "\n",
|
306 |
| - "<img src=\"images/autoencoder.png\" width=800/>" |
| 306 | + "<img src=\"images/autoencoder.png\" width=\"800\"/>" |
307 | 307 | ]
|
308 | 308 | },
|
309 | 309 | {
|
|
314 | 314 | "\n",
|
315 | 315 | "Autoencoders have different architectures for different kinds of data. Here we only provide a simple example of a vanilla encoder, which means they're only one hidden layer in the network:\n",
|
316 | 316 | "\n",
|
317 |
| - "<img src=\"images/vanilla.png\" width=500/>\n", |
| 317 | + "<img src=\"images/vanilla.png\" width=\"500\"/>\n", |
318 | 318 | "\n",
|
319 | 319 | "You can view the source code by:"
|
320 | 320 | ]
|
|
479 | 479 | "name": "python",
|
480 | 480 | "nbconvert_exporter": "python",
|
481 | 481 | "pygments_lexer": "ipython3",
|
482 |
| - "version": "3.6.8" |
| 482 | + "version": "3.6.9" |
483 | 483 | }
|
484 | 484 | },
|
485 | 485 | "nbformat": 4,
|
|
0 commit comments