scripts/gan2shape/download.sh
compile StyleGAN2
cd pnpmodules/stylegan2/stylegan2-pytorch/op
python setup.py install
Example2: training on Celeba images:
sh scripts/gan2shape/run_celeba.sh configs/gan2shape/celeba.py GPU_NUMS
Download and extract ScanNet by following the instructions provided at http://www.scan-net.org/.
[Expected directory structure of ScanNet (click to expand)]
You can obtain the train/val/test split information from here.
DATAROOT
└───scannet
│ └───scans
│ | └───scene0000_00
│ | └───color
│ | │ │ 0.jpg
│ | │ │ 1.jpg
│ | │ │ ...
│ | │ ...
│ └───scans_test
│ | └───scene0707_00
│ | └───color
│ | │ │ 0.jpg
│ | │ │ 1.jpg
│ | │ │ ...
│ | │ ...
| └───scannetv2_test.txt
| └───scannetv2_train.txt
| └───scannetv2_val.txt
Next run the data preparation script which parses the raw data format into the processed pickle format. This script also generates the ground truth TSDFs using TSDF Fusion.
[Data preparation script]
Change data_path accordingly.
sh scripts/neural_recon/gen_tsdf.sh
sh scripts/neural_recon/run_train_scannet.sh configs/neural_recon/scannet.py GPU_NUMS
python tools/data_gen/prnet.py -i /path/to/300WLP -o /path/to/300WLP-256
sh scripts/prnet/run_train_prnet.sh configs/prnet/prnet_300wlp.py GPU_NUMS
python tools/data_gen/multipie_get_lmk.py
python tools/data_gen/multipie_orgnizedata.py
sh scripts/pt3d_demos/run_train_imgs2face.sh configs/pt3d_demos/imgs2face_multipie.py GPU_NUMS
download dataset
python tools/ns/train.py --method-name lerf --data /path/to/data_folder