-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tb_model.py
165 lines (136 loc) · 5.79 KB
/
train_tb_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import numpy as np
class CombinedLungsDataset(Dataset):
def __init__(self, normal_dir, tb_dir, transform=None):
self.transform = transform
self.image_paths = []
self.labels = []
# Load normal lung images
for fname in os.listdir(normal_dir):
self.image_paths.append(os.path.join(normal_dir, fname))
self.labels.append(0) # Label 0 for normal lungs
print(f"Loaded {len(self.image_paths)} images:")
print(f" - {self.labels.count(0)} normal lung images")
# Load TB-affected lung images
for fname in os.listdir(tb_dir):
self.image_paths.append(os.path.join(tb_dir, fname))
self.labels.append(1) # Label 1 for TB-affected lungs
print(f" - {self.labels.count(1)} TB-affected lung images")
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
image = Image.open(img_path).convert('L') # Ensure all images are converted to grayscale
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# Define transformations
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5]), # Normalization for grayscale
])
# Data directories
normal_dir = 'D:/machine learning/Tuberculosis/TB_Chest_Radiography_Database/Normal'
tb_dir = 'D:/machine learning/Tuberculosis/TB_Chest_Radiography_Database/Tuberculosis'
# Create dataset
print("Creating dataset...")
full_dataset = CombinedLungsDataset(normal_dir=normal_dir, tb_dir=tb_dir, transform=transform)
print("Dataset created.")
# Split dataset into training, validation, and testing
total_size = len(full_dataset)
train_size = int(0.7 * total_size) # 70% for training
val_size = int(0.15 * total_size) # 15% for validation
test_size = total_size - train_size - val_size # Remaining 15% for testing
train_dataset, val_dataset, test_dataset = random_split(full_dataset, [train_size, val_size, test_size])
print(f"Dataset split into:")
print(f" - Training set: {train_size} images")
print(f" - Validation set: {val_size} images")
print(f" - Test set: {test_size} images")
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
class TBModel(nn.Module):
def __init__(self):
super(TBModel, self).__init__()
self.model = models.resnet18(pretrained=True)
num_ftrs = self.model.fc.in_features
self.model.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # Adjust input channels to 1
self.model.fc = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.model(x)
# Check for GPU availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
model = TBModel().to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
num_epochs = 20
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for batch_idx, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.float().unsqueeze(1).to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
if batch_idx % 10 == 9: # Print every 10 batches
print(f'Epoch [{epoch + 1}/{num_epochs}], Batch [{batch_idx + 1}/{len(train_loader)}], Loss: {running_loss / ((batch_idx + 1) * 32):.4f}')
epoch_loss = running_loss / len(train_loader.dataset)
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {epoch_loss:.4f}')
# Validation
model.eval()
val_corrects = 0
val_total = 0
with torch.no_grad():
for images, labels in val_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
predicted = (outputs > 0.5).float()
val_corrects += (predicted.squeeze() == labels).sum().item()
val_total += labels.size(0)
val_accuracy = val_corrects / val_total
print(f'Validation Accuracy: {val_accuracy:.4f}')
# Test
corrects = 0
total = 0
all_probabilities = []
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
probabilities = outputs.cpu().numpy() # Get probabilities
all_probabilities.extend(probabilities)
predicted = (outputs > 0.5).float()
corrects += (predicted.squeeze() == labels).sum().item()
total += labels.size(0)
test_accuracy = corrects / total
print(f'Test Accuracy: {test_accuracy:.4f}')
# Save probabilities to a file
np.savetxt('predicted_probabilities.txt', all_probabilities)
print("Probabilities saved to 'predicted_probabilities.txt'.")
# Save the model
torch.save(model.state_dict(), 'tuberculosis_diagnosis_model.pth')
print("Model saved to 'tuberculosis_diagnosis_model.pth'.")