-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroc.py
27 lines (22 loc) · 772 Bytes
/
roc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
def my_roc_curve(arr):
fpr = {}
tpr = {}
thresh = {}
y_labels = [i for i in range(40)]
for i in range(40):
a = arr[i, :-1]
a = a.reshape((a.shape[0], 1))
fpr[i], tpr[i], thresh[i] = roc_curve(y_labels, a, pos_label=arr[i, -1])
for i in range(40):
plt.plot(fpr[i], tpr[i], label='Class {} vs Rest'.format(i),linestyle='--')
plt.title('Multiclass ROC curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive rate')
plt.legend(loc='upper right', prop={'size': 4})
plt.savefig('roc', dpi=300)
if __name__ == '__main__':
arr = np.loadtxt('roc-data.txt', delimiter='\t')
my_roc_curve(arr)