-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhistosketch_test.go
290 lines (272 loc) · 7.99 KB
/
histosketch_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
package histosketch
import (
"bytes"
"encoding/gob"
"fmt"
"math"
"math/rand"
"testing"
)
func TestSortedAdd(t *testing.T) {
s := New(32)
s.Add(100.0)
s.Add(101.0)
s.Add(90.0)
s.AddMany(92, 27)
s.Add(99.0)
s.Add(101.0)
s.Add(102.0)
s.Add(1.0)
s.AddMany(2.0, 3)
s.AddMany(2.0, 5)
s.Add(2.0)
actual := fmt.Sprintf("%v", *s)
expected := "{[{1 1} {2 9} {90 1} {92 27} {99 1} {100 1} {101 2} {102 1}] 43 1 102}"
if actual != expected {
t.Errorf("Want %v, got %v", expected, actual)
}
}
func TestMinAndMax(t *testing.T) {
s := New(4)
values := []float64{100.0, 50.0, 75.0, 10.0, 150.0, 5.0, 1.0, 3.0, 4.0, 300.0, 0.01, 0.1}
for i, value := range values {
s.Add(value)
hmin := s.Min()
hmax := s.Max()
min := values[0]
max := values[0]
for _, x := range values[0 : i+1] {
if x < min {
min = x
}
if x > max {
max = x
}
}
if hmin != min {
t.Errorf("Want %v for Min, got %v", min, hmin)
}
if hmax != max {
t.Errorf("Want %v for Max, got %v", max, hmax)
}
}
}
func TestSumExact(t *testing.T) {
s := New(16)
for _, value := range []float64{1.0, 2.0, 3.0, 4.0, 4.0, 4.0, 5.0, 6.0} {
s.Add(value)
}
if s.Sum(0.0) != 0.0 {
t.Errorf("Want 0.0 for s.Sum(0.0), got %v", s.Sum(0.0))
}
if s.Sum(1.0) != 1.0 {
t.Errorf("Want 1.0 for s.Sum(1.0), got %v", s.Sum(1.0))
}
if s.Sum(1.5) != 1.0 {
t.Errorf("Want 1.0 for s.Sum(1.5), got %v", s.Sum(1.5))
}
if s.Sum(2.9) != 2.0 {
t.Errorf("Want 2.0 for s.Sum(2.9), got %v", s.Sum(2.9))
}
if s.Sum(4.0) != 6.0 {
t.Errorf("Want 6.0 for s.Sum(4.0), got %v", s.Sum(4.0))
}
if s.Sum(4.5) != 6.0 {
t.Errorf("Want 6.0 for s.Sum(4.5), got %v", s.Sum(4.5))
}
if s.Sum(7.0) != 8.0 {
t.Errorf("Want 8.0 for s.Sum(7.0), got %v", s.Sum(7.0))
}
if s.Sum(0.9) > s.Sum(1.0) || s.Sum(1.0) > s.Sum(1.1) {
t.Errorf("Decreasing sums for 0.9, 1.0, 1.1: %v, %v, %v", s.Sum(0.9), s.Sum(1.0), s.Sum(1.1))
}
if s.Sum(3.9) > s.Sum(4.0) || s.Sum(4.0) > s.Sum(4.1) {
t.Errorf("Decreasing sums for 3.9, 4.0, 4.1: %v, %v, %v", s.Sum(3.9), s.Sum(4.0), s.Sum(4.1))
}
if s.Sum(5.8) > s.Sum(5.9) || s.Sum(5.9) > s.Sum(6.0) {
t.Errorf("Decreasing sums for 5.8, 5.9, 6.0: %v, %v, %v", s.Sum(5.8), s.Sum(5.9), s.Sum(6.0))
}
}
func TestQuantileExact(t *testing.T) {
s := New(16)
for _, value := range []float64{0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 4.0, 4.0, 4.1, 4.2, 4.3, 4.3} {
s.Add(value)
}
if s.Quantile(0.0) != 0.01 {
t.Errorf("Want 0.01 for s.Quantile(0.0), got %v", s.Quantile(0.0))
}
if s.Quantile(0.25) != 2.0 {
t.Errorf("Want 2.0 for s.Quantile(0.25), got %v", s.Quantile(0.25))
}
if s.Quantile(0.5) != 4.0 {
t.Errorf("Want 4.0 for s.Quantile(0.5), got %v", s.Quantile(0.5))
}
if s.Quantile(0.75) != 4.2 {
t.Errorf("Want 4.2 for s.Quantile(0.75), got %v", s.Quantile(0.75))
}
if s.Quantile(1.0) != 4.3 {
t.Errorf("Want 4.3 for s.Quantile(1.0), got %v", s.Quantile(1.0))
}
qs := []float64{0.001, 0.01, 0.1, 0.2, 0.4, 0.49, 0.5, 0.51, 0.75, 0.8, 0.9, 0.99, 0.999, 0.9999}
for i := 1; i < len(qs); i++ {
if s.Quantile(qs[i-1]) > s.Quantile(qs[i]) {
t.Errorf("Want monotonic non-decreasing quantiles, got s.Quantile(%v) = %v and "+
"s.Quantile(%v) = %v", qs[i-1], s.Quantile(qs[i-1]), qs[i], s.Quantile(qs[i]))
}
}
}
func TestQuantileArgTooSmall(t *testing.T) {
defer func() {
if r := recover(); r == nil {
t.Error("Expected panic on call to Quantile with argument < 0.0")
}
}()
s := New(1024)
s.Add(1.0)
s.Add(2.0)
s.Add(3.0)
s.Quantile(-0.1)
}
func TestQuantileArgTooLarge(t *testing.T) {
defer func() {
if r := recover(); r == nil {
t.Error("Expected panic on call to Quantile with argument > 1.0")
}
}()
s := New(1024)
s.Add(1.0)
s.Add(2.0)
s.Add(3.0)
s.Quantile(1.1)
}
func TestGaussianSums(t *testing.T) {
// The relative errors here are just some arbitrary benchmarks on fixed seeds.
// Adjusting the error or domain tested is fine, they're just meant to be
// indicators of how much a change affects a small sketch on a real distribution.
for seed := 0; seed < 10; seed++ {
s := New(16) // 2.2 KB sketch
x := New(10000) // This histogram will be exact.
rand.Seed(int64(seed))
for i := 0; i < 10000; i++ {
r := rand.NormFloat64()
s.Add(r)
x.Add(r)
}
for _, q := range []float64{-2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 3.5} {
e := math.Abs(s.Sum(q)-x.Sum(q)) / x.Sum(q)
if e >= 0.1 {
t.Errorf("Got error %v for s.Sum(%v) (got %v, want %v with seed = %v)",
e, q, s.Sum(q), x.Sum(q), seed)
}
}
// Sum(-3.5) on these values should be something in the single digits but the errors
// can be a little bigger here.
e := math.Abs(s.Sum(-3.5) - x.Sum(-3.5))
if e > 2.0 {
t.Errorf("Got error %v for s.Sum(-3.5) (got %v, want %v with seed = %v)",
e, s.Sum(-3.5), x.Sum(-3.5), seed)
}
}
}
func TestGaussianQuantiles(t *testing.T) {
// The relative errors here are just some arbitrary benchmarks on fixed seeds.
// Adjusting the error or domain tested is fine, they're just meant to be
// indicators of how much a change affects a small sketch on a real distribution.
for seed := 0; seed < 10; seed++ {
s := New(16) // 2.2 KB sketch
x := New(10000) // This histogram will be exact.
rand.Seed(int64(seed))
for i := 0; i < 10000; i++ {
r := rand.NormFloat64()
s.Add(r)
x.Add(r)
}
for _, q := range []float64{0.0001, 0.001, 0.01, 0.1, 0.25, 0.35, 0.65, 0.75, 0.9, 0.99, 0.999, 0.9999} {
e := math.Abs(s.Quantile(q)-x.Quantile(q)) / x.Quantile(q)
if e >= 0.09 {
t.Errorf("Got error %v for s.Quantile(%v) (got %v, want %v with seed = %v)",
e, q, s.Quantile(q), x.Quantile(q), seed)
}
}
}
}
func TestMarshal(t *testing.T) {
s := New(16)
for _, value := range []float64{1.0, 2.0, 3.0, 4.0, 4.0, 4.0, 5.0, 6.0} {
s.Add(value)
}
want := fmt.Sprintf("%v", s)
var stream bytes.Buffer
enc := gob.NewEncoder(&stream)
err := enc.Encode(s)
if err != nil {
t.Errorf("Got error encoding Sketch: %v", err)
}
dec := gob.NewDecoder(&stream)
s2 := &Sketch{}
err = dec.Decode(&s2)
if err != nil {
t.Errorf("Got error decoding serialized Sketch: %v", err)
}
got := fmt.Sprintf("%v", s2)
if want != got {
t.Errorf("After unmarshalling, got %v, want %v", got, want)
}
}
func TestOptimalOneDataPoint(t *testing.T) {
got := NewFromSample([]float64{ 1.0 }, 1)
want := "&{[{1 1}] 1 1 1}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalOneCentroid(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 2.0, 3.0, 4.0, 5.0 }, 1)
want := "&{[{3 -5}] 5 1 5}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalTwoCentroids(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }, 2)
want := "&{[{2 -3} {5 -3}] 6 1 6}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalTwoCentroidsSkewed(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 7.0, 7.0, 8.0, 8.0, 9.0, 9.0 }, 2)
want := "&{[{1 1} {8 -6}] 7 1 9}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalManyCentroids(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 7.0, 7.0, 8.0, 8.0, 9.0, 9.0 }, 7)
want := "&{[{1 1} {7 1} {7 1} {8 1} {8 1} {9 1} {9 1}] 7 1 9}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalMaxCentroids(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 2.0, 3.0, 4.0, 4.0, 5.0, 6.0 }, 6)
want := "&{[{1 1} {2 1} {3 1} {4 -2} {5 1} {6 1}] 7 1 6}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}
func TestOptimalTooFewCentroids(t *testing.T) {
defer func() {
if r := recover(); r == nil {
t.Error("Expected panic on call to NewFromSample with 0 centroids")
}
}()
NewFromSample([]float64{ 1.0, 2.0, 3.0, 4.0, 4.0, 5.0, 6.0 }, 0)
}
func TestOptimalTooManyCentroids(t *testing.T) {
got := NewFromSample([]float64{ 1.0, 2.0, 3.0, 4.0, 4.0, 5.0, 6.0 }, 10)
want := "&{[{1 1} {2 1} {3 1} {4 2} {5 1} {6 1}] 7 1 6}"
if fmt.Sprintf("%v", got) != want {
t.Errorf("Want %v, got %v", want, got)
}
}