-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_trainer.py
141 lines (125 loc) · 6.85 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import torch
import time
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
from utils import save_checkpoint
from loss_fun import My_loss
import torch.nn as nn
class model_trainer:
def __init__(self,
model,
learning_rate = 2e-3,
num_epochs = 20,
batch_size = 32
):
self.model = model
self.num_epochs = num_epochs
self.optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, self.model.parameters()),
learning_rate) # leave betas and eps by default
self.lr_scheduler = ReduceLROnPlateau(self.optimizer, verbose=True)
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.batch_size = batch_size
self.criterion = My_loss()
def train(self, train_loader, valid_loader):
image_num = len(train_loader.dataset.indices)
niter = np.int(np.ceil(image_num / self.batch_size))
train_loss_history = {'total_loss':[], 'cls_loss': [], 'reg_loss': [], 'centerness_loss': []}
valid_loss_history = {'total_loss':[], 'cls_loss': [], 'reg_loss': [], 'centerness_loss': []}
for i in range(self.num_epochs):
self.model.train()
start_t = time.time()
acc_loss = 0
acc_cls_loss = 0
acc_reg_loss = 0
acc_cen_loss = 0
for iter_num, batch in enumerate(train_loader):
self.optimizer.zero_grad()
for key in batch:
assert isinstance(batch[key], type(batch['template'])) or isinstance(batch[key], type(batch['targets']))
if torch.is_tensor(batch[key]):
batch[key] = batch[key].to(self.device)
else:
for sub_key in batch[key]:
batch[key][sub_key] = batch[key][sub_key].to(self.device)
batch_template = batch['template']
batch_detection = batch['detection']
GT_cls = batch['targets']['gt_class']
GT_mask = batch['targets']['distances']
batch_template = batch_template.to(self.device)
batch_detection = batch_detection.to(self.device)
GT_cls = GT_cls.to(self.device)
GT_mask = GT_mask.to(self.device)
cls, mask_reg, centerness = self.model.forward(batch_template, batch_detection)
cls_loss, reg_loss, centerness_loss = self.criterion.forward(cls, mask_reg, centerness, GT_cls, GT_mask)
loss = cls_loss + 1.5 * reg_loss + centerness_loss
acc_loss += loss.item()
acc_cls_loss += cls_loss.item()
acc_reg_loss += reg_loss.item()
acc_cen_loss += centerness_loss.item()
loss.backward()
self.optimizer.step()
print('(Iter {} / {})'.format(iter_num + 1, niter))
# self.writer.add_scalar('Loss/train', loss.item(), i * (image_num // batch.shape[0]) + iter_num)
end_t = time.time()
acc_loss = acc_loss / niter
acc_cen_loss = acc_cen_loss / niter
acc_reg_loss = acc_reg_loss / niter
acc_cls_loss = acc_cls_loss / niter
train_loss_history['total_loss'].append(acc_loss)
train_loss_history['cls_loss'].append(acc_cls_loss)
train_loss_history['reg_loss'].append(acc_reg_loss)
train_loss_history['centerness_loss'].append(acc_cen_loss)
val_tot_loss, val_cls_loss, val_reg_loss, val_cen_loss = self.valid(valid_loader= valid_loader)
valid_loss_history['total_loss'].append(val_tot_loss)
valid_loss_history['cls_loss'].append(val_cls_loss)
valid_loss_history['reg_loss'].append(val_reg_loss)
valid_loss_history['centerness_loss'].append(val_cen_loss)
print('(Epoch {} / {}) train loss: {:.4f} valid loss: {:.4f} time per epoch: {:.1f}s current lr: {}'.format(
i + 1, self.num_epochs, acc_loss, val_tot_loss, end_t - start_t, self.optimizer.param_groups[0]['lr']))
# save_checkpoint(self.model.module.state_dict(), is_best=True, checkpoint_dir=os.getcwd() + '/checkpoint/')
if (i + 1) % 5 == 0:
print('Save the current model to checkpoint!')
save_checkpoint(self.model.module.state_dict(), is_best= False, checkpoint_dir= os.getcwd() + '/checkpoint/')
torch.save(train_loss_history, os.getcwd() + '/checkpoint/train_loss.pt')
torch.save(valid_loss_history, os.getcwd() + '/checkpoint/valid_loss.pt')
if i == np.argmin(valid_loss_history['total_loss']):
print('The current model is the best model! Save it!')
save_checkpoint(self.model.module.state_dict(), is_best=True,
checkpoint_dir=os.getcwd() + '/checkpoint/')
self.lr_scheduler.step(val_tot_loss)
def valid(self, valid_loader):
self.model.eval()
with torch.no_grad():
image_num = len(valid_loader.dataset.indices)
niter = np.int(np.ceil(image_num / self.batch_size))
acc_loss = 0
acc_cls_loss = 0
acc_reg_loss = 0
acc_cen_loss = 0
for iter_num, batch in enumerate(valid_loader):
for key in batch:
assert isinstance(batch[key], type(batch['template'])) or isinstance(batch[key], type(batch['targets']))
if torch.is_tensor(batch[key]):
batch[key] = batch[key].to(self.device)
else:
for sub_key in batch[key]:
batch[key][sub_key] = batch[key][sub_key].to(self.device)
batch_template = batch['template']
batch_detection = batch['detection']
GT_cls = batch['targets']['gt_class']
GT_mask = batch['targets']['distances']
cls, mask_reg, centerness = self.model.forward(batch_template, batch_detection)
cls_loss, reg_loss, centerness_loss = self.criterion.forward(cls, mask_reg, centerness, GT_cls, GT_mask)
loss = cls_loss + 1.5 * reg_loss + centerness_loss
acc_loss += loss.item()
acc_cls_loss += cls_loss.item()
acc_reg_loss += reg_loss.item()
acc_cen_loss += centerness_loss.item()
print('(valid {} / {})'.format(iter_num + 1, niter))
acc_loss = acc_loss / niter
acc_cen_loss = acc_cen_loss / niter
acc_reg_loss = acc_reg_loss / niter
acc_cls_loss = acc_cls_loss / niter
return acc_loss, acc_cls_loss, acc_reg_loss, acc_cen_loss