forked from IBM/CryoRL-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_c51.py
307 lines (271 loc) · 12.7 KB
/
train_c51.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import torch
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import C51Policy
from tianshou.policy.random import RandomPolicy
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer, PrioritizedVectorReplayBuffer
from cryoEM_dataset import get_dataset
from cryoEM_env import CryoEMEnv
from cryoEM_config import *
from dqn import NetV2
from pathlib import Path
import copy
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CryoEM')
parser.add_argument('--dataset', type=str, default='CryoEM-5-5')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--num-atoms', type=int, default=51)
parser.add_argument('--v-min', type=float, default=-10.)
parser.add_argument('--v-max', type=float, default=10.)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 256, 128])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--prioritized-replay',
action="store_true", default=False)
parser.add_argument('--alpha', type=float, default=0.6)
parser.add_argument('--beta', type=float, default=0.4)
parser.add_argument(
'--save-buffer-name', type=str,
default="./expert_DQN_CartPole-v0.pkl")
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--eval', action="store_true", default=False)
parser.add_argument('--random-policy', action="store_true", default=False)
parser.add_argument('--planning', action="store_true", default=False)
parser.add_argument('--print-trajectory', action="store_true", default=False)
parser.add_argument('--use-one-hot', action="store_true", default=False)
parser.add_argument('--train-prediction', action="store_true", default=False)
parser.add_argument('--use-penalty', action="store_true", default=False)
parser.add_argument('--prediction-type', type=str, default='classification')
parser.add_argument('--duration', type=float, default=120.0)
parser.add_argument('--ctf-thresh', type=float, default=6.0)
parser.add_argument('--dynamic-reward', action="store_true", default=False)
parser.add_argument('--action-elimination', action="store_true", default=False)
# args = parser.parse_known_args()[0]
args = parser.parse_args()
return args
def update_config(args):
if 'duration' in args:
CryoEMConfig.Searching_Limit = args.duration
print('duration', CryoEMConfig.Searching_Limit)
if 'ctf_thresh' in args:
CryoEMConfig.LOW_CTF_THRESH = args.ctf_thresh
print('low CTF threshold', CryoEMConfig.LOW_CTF_THRESH)
if 'feature_dim' in args:
CryoEMConfig.FEATURE_DIM = args.feature_dim
print('feature dim', CryoEMConfig.FEATURE_DIM)
if 'hist_bins' in args:
CryoEMConfig.FEATURE_HISTOGRAM_BIN = args.hist_bins
print('feature histogram bin', CryoEMConfig.FEATURE_HISTOGRAM_BIN)
def test_c51(args=get_args()):
# env = gym.make(args.task)
# args.state_shape = env.observation_space.shape or env.observation_space.n
# args.action_shape = env.action_space.shape or env.action_space.n
# print ('Print trajectory: {}'.format(args.print_trajectory))
print(args)
prediction_type = CryoEMConfig.CLASSIFICATION if args.prediction_type == 'classification' else CryoEMConfig.REGRESSION
train_dataset, val_dataset, feature_dim, category_bins = get_dataset(
args.dataset,
# category_bins=[0,CryoEMConfig.LOW_CTF_THRESH, 99999],
prediction_type=prediction_type,
use_one_hot=args.use_one_hot)
# update configuration
args.feature_dim = feature_dim
args.hist_bins = category_bins
update_config(args)
# print(CryoEMConfig)
# only doable in cpu due to memory issue
# if train_visual_feature is not None:
# train_visual_feature = torch.from_numpy(train_visual_feature[np.newaxis, :]).cpu()
# if val_visual_feature is not None:
# val_visual_feature = torch.from_numpy(val_visual_feature[np.newaxis, :]).cpu()
# train_envs = CryoEMEnv(train_dataset, history_size=CryoEMConfig.HISTORY_SIZE, ctf_thresh=CryoEMConfig.LOW_CTF_THRESH)
# test_envs = CryoEMEnv(val_dataset, history_size=CryoEMConfig.HISTORY_SIZE, ctf_thresh=CryoEMConfig.LOW_CTF_THRESH)
# !!!! each environment needs its own copy of data as the data status changes as holes are visisted
train_envs = DummyVectorEnv([lambda: CryoEMEnv(copy.deepcopy(train_dataset),
id=k,
#history_size=CryoEMConfig.HISTORY_SIZE,
ctf_thresh=CryoEMConfig.LOW_CTF_THRESH,
#hist_bins=category_bins,
use_prediction=args.train_prediction,
action_elimination=args.action_elimination,
dynamic_reward=args.dynamic_reward,
use_penalty=args.use_penalty) \
for k in range(args.training_num)])
# test_num set to 1 for evaluation
test_num = args.test_num if not args.eval else 1
test_envs = DummyVectorEnv([lambda: CryoEMEnv(copy.deepcopy(val_dataset),
id=k,
#history_size=CryoEMConfig.HISTORY_SIZE,
ctf_thresh=CryoEMConfig.LOW_CTF_THRESH,
#hist_bins=category_bins,
use_prediction=True,
action_elimination=args.action_elimination,
dynamic_reward=args.dynamic_reward,
use_penalty=args.use_penalty,
evaluation=True,
planning=args.planning,
print_trajectory=args.print_trajectory) \
for k in range(test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
state_shape = CryoEMConfig.HISTORY_SIZE * CryoEMConfig.FEATURE_DIM
action_shape = 1
net = NetV2(
state_shape,
action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=True,
num_atoms=args.num_atoms
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = C51Policy(
net,
optim,
args.gamma,
args.num_atoms,
args.v_min,
args.v_max,
args.n_step,
target_update_freq=args.target_update_freq
).to(args.device)
buf = None
if not args.eval:
# buffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size, buffer_num=len(train_envs),
alpha=args.alpha, beta=args.beta)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
if not args.eval:
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=False)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# test_collector.collect(n_episode=3)
# rain_collector.collect(n_episode=1, render=1 / 35)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def load_policy(ckpt_path, policy):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint)
return policy
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
torch.save({
'model': policy.state_dict(),
'optim': optim.state_dict(),
}, os.path.join(log_path, 'checkpoint.pth'))
# pickle.dump(train_collector.buffer,
# open(os.path.join(log_path, 'train_buffer.pkl'), "wb"))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
'''
def train_fn(epoch, env_step):
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / \
40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
'''
def train_fn(epoch, env_step):
# eps annnealing, just a demo
step_per_epoch = args.step_per_epoch
if env_step <= step_per_epoch:
policy.set_eps(args.eps_train)
elif env_step <= 5 * step_per_epoch:
eps = args.eps_train - (env_step - step_per_epoch + 1e-4) / \
(4 * step_per_epoch) * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# log directory
model_dir = 'c51{}'.format(args.hidden_sizes[0]) if args.hidden_sizes[0] != 128 else 'c51' # 128 is default sizes
if args.prioritized_replay:
model_dir += '-replay'
model_dir += '-{}-train{}-test{}-step{}-e{}'.format(args.dataset, args.training_num, args.test_num,
args.step_per_epoch, args.epoch)
model_dir += '-pred' if args.train_prediction else '-gt'
if prediction_type == CryoEMConfig.CLASSIFICATION:
model_dir += '-hard' if args.use_one_hot else '-soft'
else:
model_dir += '-regress'
model_dir += '-ctf{}'.format(int(args.ctf_thresh))
if args.dynamic_reward:
model_dir += '-dR'
if args.use_penalty:
model_dir += '-penalty'
log_path = os.path.join(args.logdir, model_dir)
Path(log_path).mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
# evaluation
if args.eval:
if args.random_policy:
policy = RandomPolicy()
else:
policy = load_policy(os.path.join(log_path, 'policy.pth'), policy)
policy.set_eps(args.eps_test)
policy.eval()
test_collector = Collector(policy, test_envs, exploration_noise=False)
result = test_collector.collect(n_episode=50, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()} +/ {rews.std()}, length: {lens.mean()} +/ {lens.std()}")
return
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
save_fn=save_fn,
logger=logger,
#resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn
)
# assert stop_fn(result['best_reward'])
if __name__ == '__main__':
test_c51(get_args())