forked from IBM/CryoRL-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcryoEM_genetic_optimization.py
439 lines (360 loc) · 13.9 KB
/
cryoEM_genetic_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import argparse
import pygad
import numpy as np
from cryoEM_dataset import get_dataset
from cryoEM_config import CryoEMConfig
from cryoEM_object import CryoEMPatch
SWITCH_GRID_COST = 10
SWITCH_SQUARE_COST = 5
SWITCH_PATCH_COST = 3
SWITCH_HOLE_COST = 0
IMAGING_COST = 2
SOLUTION_BY_PATCH=True
CryoEM_DATA=None
PATCH_DATA=[]
RUN_RESULTS=None
PATCH_PER_POPULATION=20
GENE_PRE_POPULATION=8
def fitness_func1(solution, solution_idx):
global PATCH_DATA
# print (solution, solution_idx)
solution = list(set(solution))
# print (solution)
# print ('---')
patch, _, _ = PATCH_DATA[solution[0]]
prev_patch = patch
r = 0.0
t = 0.0
duration = CryoEMConfig.Searching_Limit
for k in solution:
patch, good_holes, _ = PATCH_DATA[k]
#assert good_holes > 0
# first hole
if patch.name[:43] == prev_patch.name[:43]: # same patch
t += IMAGING_COST
r0 = 1.0
elif patch.name[:31] == prev_patch.name[:31]: # same square
t += (SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.57
elif patch.name[:23] == prev_patch.name[:23]: # same grid
t += (SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.23
else:
t += (SWITCH_GRID_COST + SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.09
if t > CryoEMConfig.Searching_Limit:
return r
r += r0
good_holes = max(good_holes - 1, 0)
# cannot visit all good holes
if t + good_holes * IMAGING_COST >= duration:
return (r + np.round((duration - t) / IMAGING_COST))
t += good_holes * IMAGING_COST
r += good_holes
prev_patch = patch
return r
def sort_solution_by_grid(patch_list):
patch_counter = {}
patch_idx = {}
for k, patch in enumerate(patch_list):
patch_counter[patch[0].name] = patch[1]
patch_idx[patch[0].name] = k
grids = list(set([item[:23] for item in patch_counter]))
grid_counter = {item:0 for item in grids}
for key, val in patch_counter.items():
grid_counter[key[0:23]] += val
tuple_list = list(grid_counter.items())
grid_list = sorted(tuple_list,key=lambda x:(-x[1],x[0]))
# print('\n', grid_list, '\n')
patch_dict = {grid:[] for grid, _ in grid_list}
for key, val in patch_counter.items():
patch_dict[key[0:23]].append((key,val))
patch_list = []
for grid, _ in grid_list:
patch_list += patch_dict[grid]
#print (patch_list)
return [patch_idx[item[0]] for item in patch_list]
'''
def sort_solution_by_grid(solution):
patch_counter = {}
patch_idx = {}
for k in solution:
patch_counter[PATCH_DATA[k][0].name] = PATCH_DATA[k][1]
patch_idx[PATCH_DATA[k][0].name] = k
grids = list(set([item[:23] for item in patch_counter]))
grid_counter = {item:0 for item in grids}
for key, val in patch_counter.items():
grid_counter[key[0:23]] += val
tuple_list = list(grid_counter.items())
grid_list = sorted(tuple_list,key=lambda x:(-x[1],x[0]))
# print('\n', grid_list, '\n')
patch_dict = {grid:[] for grid, _ in grid_list}
for key, val in patch_counter.items():
patch_dict[key[0:23]].append((key,val))
patch_list = []
for grid, _ in grid_list:
patch_list += patch_dict[grid]
#print (patch_list)
return [patch_idx[item[0]] for item in patch_list]
'''
def fitness_func(solution, solution_idx):
global PATCH_DATA, SOLUTION_BY_PATCH
# print (solution, solution_idx)
solution = list(set(solution))
#print (solution, SOLUTION_BY_PATCH)
patch_list = [PATCH_DATA[k] for k in solution] if SOLUTION_BY_PATCH else create_patch_list(solution)
# sort patch by grid
sort_idx = sort_solution_by_grid(patch_list)
patch_list = [patch_list[k] for k in sort_idx]
return patch_fitness(patch_list)
def create_patch_list(hole_idx_list):
patch_dict = {}
for idx in hole_idx_list:
h = CryoEM_DATA.get_hole(idx)
patch_name = (h.name)[:43]
if patch_name not in patch_dict:
patch_dict[patch_name] = []
patch_dict[patch_name].append(h.copy())
patch_list = []
for key, val in patch_dict.items():
patch = CryoEMPatch(key, hole_list=val)
patch_list.append(patch(0, 30, 8))
return patch_list
def hole_fitness(hole_idx_list):
patch_list = create_patch_list(hole_idx_list)
return patch_fitness(patch_list)
def patch_fitness(patch_list):
prev_patch = None
r = 0.0
t = 0.0
duration = CryoEMConfig.Searching_Limit
for k, item in enumerate(patch_list):
patch, good_holes, _ = item
# first patch
if prev_patch is None:
prev_patch = patch
# first hole
if patch.name[:43] == prev_patch.name[:43]: # same patch
t += IMAGING_COST
r0 = 1.0
elif patch.name[:31] == prev_patch.name[:31]: # same square
t += (SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.57
elif patch.name[:23] == prev_patch.name[:23]: # same grid
t += (SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.23
else:
t += (SWITCH_GRID_COST + SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.09
if t > CryoEMConfig.Searching_Limit:
return r
r += r0
good_holes = max(good_holes - 1, 0)
# cannot visit all good holes
if t + good_holes * IMAGING_COST >= duration:
return (r + np.round((duration - t) / IMAGING_COST))
t += good_holes * IMAGING_COST
r += good_holes
prev_patch = patch
return r
def true_fitness(solution):
global SOLUTION_BY_PATCH, PATCH_DATA
solution = list(set(solution))
# print (solution)
# sort patch by the number of low ctfs predicted
# predictions = np.array([ PATCH_DATA[k][1] for k in solution])
# idx = np.argsort(predictions)
# solution = [ solution[k] for k in idx]
# print (solution)
patch_list = [PATCH_DATA[k] for k in solution] if SOLUTION_BY_PATCH else create_patch_list(solution)
solution = sort_solution_by_grid(patch_list)
total_rewards = 0.0
total_lctf = 0.0
total_visit = 0.0
t = 0.0
prev_h_name = None
is_done = False
duration = CryoEMConfig.Searching_Limit
ctf_thresh = CryoEMConfig.LOW_CTF_THRESH
for k, (patch,_,_) in enumerate(patch_list):
# patch, _, _ = PATCH_DATA[k]
for h in patch:
if h.category.value[0] < h.category.value[1]: # skip, negative prediction
continue
h_name = h.name
# first hole
if prev_h_name is None:
prev_h_name = h_name
r0 = 0.0
if prev_h_name[:43] == h_name[:43]: # same patch
t += IMAGING_COST
r0 = 1.0
elif prev_h_name[:31] == h_name[:31]: # same square
t += (SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.57
elif prev_h_name[:23] == h_name[:23]: # same grid
t += (SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
#r0 = 0.23
r0 = 0.46
else:
t += (SWITCH_GRID_COST + SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.09
# print ('grid', r)
# print (prev_h, '--->', h)
if t >= duration:
print ('early exit')
is_done = True
break
if h.gt_ctf.value <= ctf_thresh:
total_rewards += r0
total_lctf += 1
# print(r, total_rewards, total_lctf)
# cnt += 1
total_visit += 1
prev_h_name = h_name
if is_done:
break
return total_rewards, total_lctf, total_visit
def true_fitness1(solution):
solution = list(set(solution))
patch, _, _ = PATCH_DATA[solution[0]]
prev_patch = patch
r=0.0
c = 0.0
t = 0.0
duration = CryoEMConfig.Searching_Limit
for k in solution:
patch, good_holes, true_holes = PATCH_DATA[k]
# first hole
if patch.name[:43] == prev_patch.name[:43]: # same patch
t += IMAGING_COST
r0 = 1.0
elif patch.name[:31] == prev_patch.name[:31]: # same square
t += (SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.57
elif patch.name[:23] == prev_patch.name[:23]: # same grid
t += (SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.23
else:
t += (SWITCH_GRID_COST + SWITCH_SQUARE_COST + SWITCH_PATCH_COST + IMAGING_COST)
r0 = 0.09
if t > CryoEMConfig.Searching_Limit:
print(r)
return r, c
r += r0
c += 1
good_holes = max(good_holes - 1, 0)
# cannot visit all good holes
if t + good_holes * IMAGING_COST >= CryoEMConfig.Searching_Limit:
print(r)
return (r + np.round((duration - t) / IMAGING_COST)), c+np.round((duration - t) / IMAGING_COST)
t += good_holes * IMAGING_COST
r += good_holes
c += true_holes
prev_patch = patch
print (r)
return r, c
def initial_population():
good_hole_list = [item[2] for item in PATCH_DATA]
I = np.argsort(good_hole_list)
return [I[-PATCH_PER_POPULATION:] for i in range(GENE_PER_POPULATION)]
def get_patch_list(data):
grid_list = data.grids
patches = []
for grid in grid_list:
for square in grid:
patches += [item for item in square]
results = []
for patch in patches:
categories = patch.get_categories(prediction=True, visited=False)
predictions = [item.value[0] >= item.value[1] for item in categories]
true_categories = patch.get_categories(prediction=False, visited=False)
ground_truth = [ item.value[0] >= item.value[1] for item in true_categories]
true_positives = [True for p, t in zip(predictions, ground_truth) if t and p == t]
low_predictions = [item for item in predictions if item is True]
# print (predictions)
# print(ground_truth)
# print (true_positives)
# print ('-----\n')
if len(low_predictions) > 0:
results.append((patch, len(low_predictions), len(true_positives)))
return results
def on_start(ga_instance):
global RUN_RESULTS
print("on_start()")
RUN_RESULTS = None
def on_fitness(ga_instance, population_fitness):
print("on_fitness()")
def on_parents(ga_instance, selected_parents):
print("on_parents()")
def on_crossover(ga_instance, offspring_crossover):
print("on_crossover()")
def on_mutation(ga_instance, offspring_mutation):
print("on_mutation()")
def on_generation(ga_instance):
print("on_generation()")
def on_stop(ga_instance, last_population_fitness):
global RUN_RESULTS
print("on_stop()")
best_solution = ga_instance.best_solutions[-1]
#print (ga_instance.best_solutions_fitness)
#print (fitness_func(best_solution, -1))
for k in best_solution:
print (PATCH_DATA[k][0].name, PATCH_DATA[k][1], PATCH_DATA[k][2])
RUN_RESULTS = true_fitness(best_solution)
def arg_parser():
parser = argparse.ArgumentParser(description='PyTorch evaluation')
# parser.add_argument('--filename', type=str, help="where is the data")
parser.add_argument('--dataset', type=str, help="where is the data")
parser.add_argument('--duration', type=float, default=240.0, help="where is the data")
parser.add_argument('--ctf-thresh', type=float, default=6.0, help="ctf threshold")
parser.add_argument('--num-genes', type=int, default=8, help="number of genes")
parser.add_argument('--num-patches', type=int, default=20, help="number of patches in search")
parser.add_argument('--num-tries', type=int, default=10, help="number of tries")
parser.add_argument('--solution-by-hole', action="store_true", default=False)
return parser
def main():
global args, PATCH_DATA, RUN_RESULTS, SOLUTION_BY_PATCH, CryoEM_DATA, GENE_PER_POPULATION, PATCH_PER_POPULATION
parser = arg_parser()
args = parser.parse_args()
# update global variable
CryoEMConfig.Searching_Limit = args.duration
CryoEMConfig.LOW_CTF_THRESH = args.ctf_thresh
_, val_dataset, _, _, _, _ = get_dataset(args.dataset, CryoEMConfig.CLASSIFICATION, use_one_hot=True)
CryoEM_DATA = val_dataset
PATCH_DATA = get_patch_list(val_dataset)
# print (PATCH_DATA)
SOLUTION_BY_PATCH = not args.solution_by_hole
PATCH_PER_POPULATION = args.num_patches
GENE_PER_POPULATION = args.num_genes
print (SOLUTION_BY_PATCH)
patch_len = len(PATCH_DATA) if SOLUTION_BY_PATCH else val_dataset.num_holes()
fitness_function = fitness_func
results = []
for k in range(args.num_tries):
print ('----- {} ------'.format(k))
ga_instance = pygad.GA(num_generations=40,
num_parents_mating=3,
fitness_func=fitness_function,
#initial_population=initial_population(),
sol_per_pop=10,
num_genes=GENE_PER_POPULATION,
init_range_low = 0,
init_range_high = patch_len,
gene_type=int,
crossover_type='single_point',
on_start=on_start,
#on_fitness=on_fitness,
#on_parents=on_parents,
#on_crossover=on_crossover,
#on_mutation=on_mutation,
#on_generation=on_generation,
save_best_solutions=True,
on_stop=on_stop)
ga_instance.run()
print (RUN_RESULTS)
results.append(list(RUN_RESULTS))
results = np.array(results)
print (np.mean(results, axis=0), np.std(results, axis=0))
if __name__ == '__main__':
main()