forked from beef-broccoli/deebo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharms.py
53 lines (39 loc) · 1.15 KB
/
arms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import random
from numpy.random import default_rng
class BernoulliArm:
def __init__(self, p):
self.p = p
def __str__(self):
return f'Arm with Bernoulli distribution (p={self.p})'
def draw(self):
if random.random() > self.p:
return 0.0
else:
return 1.0
class NormalArm:
def __init__(self, mean, sd):
self.mean = mean
self.sd = sd
def __str__(self):
return f'Arm with normal distribution (mean={self.mean}, sd={self.sd})'
def draw(self):
rng = default_rng()
return rng.normal(self.mean, self.sd)
class NormalArmZeroToOne:
# if sample drawn from normal distribution is negative, return zero
def __init__(self, mean, sd):
self.mean = mean
self.sd = sd
def __str__(self):
return f'[0,1] arm with normal distribution (mean={self.mean}, sd={self.sd})'
def draw(self):
rng = default_rng()
sample = rng.normal(self.mean, self.sd)
if sample < 0:
return 0
elif sample > 1:
return 1
else:
return sample
if __name__ == '__main__':
pass