-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathorchestrate.rs
1180 lines (1109 loc) · 42.5 KB
/
orchestrate.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![allow(non_snake_case)]
/*
Multi-party ECDSA
Copyright 2018 by Kzen Networks
This file is part of Multi-party ECDSA library
(https://github.com/KZen-networks/multi-party-ecdsa)
Multi-party ECDSA is free software: you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
@license GPL-3.0+ <https://github.com/KZen-networks/multi-party-ecdsa/blob/master/LICENSE>
*/
//!
//!
//! Using a couple of tests this module demonstrates a way that you could use the library
//! and build an actual application out of the implementation.
//! Both the Key Generation and Signing operations are divided into different stages.
//!
//! All the stages are sequential.
//! Usually the input of one stage is one of the output values of a prior stage.
//!
//! Each input and output for a stage is defined as a structure.
//! Using serde_json this could easily be made a json.
//!
//! Then each stage API basically resembles an HTTP API for a server that would be one of the
//! parties to this Distributed Key Generation or Signing Protocol.
//!
//! A note: _l or _s after many variable names in this API is to make rust_analyzer happy.
//! If We initiaize a structure using vars with names same as member names, rust analyzer complains
//! with:
//! shorthand struct initiailization error.
//!
//! Another Note: If you set the WRITE_FILE env variable.. the tests in this file will write
//! jsons keygen.txt and sign.txt which will contain keygen and sign json
//! input/output pairs for all the stages.
use crate::protocols::multi_party_ecdsa::gg_2020::party_i::{
KeyGenBroadcastMessage1, KeyGenDecommitMessage1, Keys, LocalSignature, Parameters, SharedKeys,
SignBroadcastPhase1, SignDecommitPhase1, SignKeys, SignatureRecid,
};
use curv::arithmetic::traits::Converter;
use curv::elliptic::curves::traits::*;
use crate::protocols::multi_party_ecdsa::gg_2020::ErrorType;
use crate::utilities::mta::{MessageA, MessageB};
use crate::Error;
use curv::cryptographic_primitives::proofs::sigma_dlog::DLogProof;
use curv::cryptographic_primitives::secret_sharing::feldman_vss::VerifiableSS;
use curv::elliptic::curves::secp256_k1::{FE, GE};
use paillier::*;
use serde::{Deserialize, Serialize};
use zk_paillier::zkproofs::DLogStatement;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage1Input {
pub index: usize, // participant indexes start from zero.
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage1Result {
pub party_keys_l: Keys,
pub bc_com1_l: KeyGenBroadcastMessage1,
pub decom1_l: KeyGenDecommitMessage1,
pub h1_h2_N_tilde_l: DLogStatement,
}
//
// As per page13 https://eprint.iacr.org/2020/540.pdf:
// This step will:
// 1. This participant will create a Commitment, Decommitment pair on a scalar
// ui and then publish the Commitment part.
// 2. It will create a Paillier Keypair and publish the public key for that.
//
pub fn keygen_stage1(input: &KeyGenStage1Input) -> KeyGenStage1Result {
// Paillier keys and various other values
// party_keys.ek is a secret value and it should be encrypted
// using a key that is owned by the participant who creates it. Right now it's plaintext but
// this is test.
//
let party_keys = Keys::create(input.index);
let (bc1, decom) =
party_keys.phase1_broadcast_phase3_proof_of_correct_key_proof_of_correct_h1h2();
let h1_h2_N_tilde = bc1.dlog_statement.clone();
KeyGenStage1Result {
party_keys_l: party_keys,
bc_com1_l: bc1,
decom1_l: decom,
h1_h2_N_tilde_l: h1_h2_N_tilde,
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage2Input {
pub index: usize,
pub params_s: Parameters,
pub party_keys_s: Keys,
pub bc1_vec_s: Vec<KeyGenBroadcastMessage1>,
pub decom1_vec_s: Vec<KeyGenDecommitMessage1>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage2Result {
pub vss_scheme_s: VerifiableSS<GE>,
pub secret_shares_s: Vec<FE>,
pub index_s: usize,
}
//
// As per page 13 on https://eprint.iacr.org/2020/540.pdf:
// 1. Decommit the value obtained in stage1.
// 2. Perform a VSS on that value.
pub fn keygen_stage2(input: &KeyGenStage2Input) -> Result<KeyGenStage2Result, ErrorType> {
let vss_result = input
.party_keys_s
.phase1_verify_com_phase3_verify_correct_key_verify_dlog_phase2_distribute(
&input.params_s,
&input.decom1_vec_s,
&input.bc1_vec_s,
)?;
let (vss_scheme, secret_shares, index) = vss_result;
Ok(KeyGenStage2Result {
vss_scheme_s: vss_scheme,
secret_shares_s: secret_shares,
index_s: index,
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage3Input {
pub party_keys_s: Keys,
pub vss_scheme_vec_s: Vec<VerifiableSS<GE>>,
pub secret_shares_vec_s: Vec<FE>,
pub y_vec_s: Vec<GE>,
pub params_s: Parameters,
pub index_s: usize,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage3Result {
pub shared_keys_s: SharedKeys,
pub dlog_proof_s: DLogProof<GE>,
}
//
// As per page 13 on https://eprint.iacr.org/2020/540.pdf:
// 1. Participant adds there private shares to obtain their final share of the keypair.
// 2. Calculate the corresponding public key for that share.
// 3. Generate the dlog proof which the orchestrator would check later.
//
// Important to note that all the stages are sequential. Unless all the messages from the previous
// stage are not delivered, you cannot jump on the next stage.
pub fn keygen_stage3(input: &KeyGenStage3Input) -> Result<KeyGenStage3Result, ErrorType> {
let res = input
.party_keys_s
.phase2_verify_vss_construct_keypair_phase3_pok_dlog(
&input.params_s,
&input.y_vec_s,
&input.secret_shares_vec_s,
&input.vss_scheme_vec_s,
&input.index_s + 1,
)?;
let (shared_keys, dlog_proof) = res;
Ok(KeyGenStage3Result {
shared_keys_s: shared_keys,
dlog_proof_s: dlog_proof,
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyGenStage4Input {
pub params_s: Parameters,
pub dlog_proof_vec_s: Vec<DLogProof<GE>>,
pub y_vec_s: Vec<GE>,
}
//
// Final stage of key generation. All parties must execute this.
// Unless this is successful the protocol is not complete.
//
pub fn keygen_stage4(input: &KeyGenStage4Input) -> Result<(), ErrorType> {
let result = Keys::verify_dlog_proofs(&input.params_s, &input.dlog_proof_vec_s, &input.y_vec_s);
if let Err(err) = result {
println!("KeyGen phase 3 checks failed. {:?}", &err);
return Err(err);
}
Ok(())
}
#[cfg(test)]
macro_rules! write_input {
($index: expr, $stage: expr, $op: expr, $json: expr) => {{
if var_os("WRITE_FILE").is_some() {
use std::fs::OpenOptions;
let mut json_file = OpenOptions::new()
.append(true)
.open(&format!("{}.txt", $op))
.unwrap();
let index = $index;
let stage = $stage;
let op = $op;
let json = $json;
json_file
.write_all(format!("Input {} stage {} index {}\n", op, stage, index).as_bytes())
.unwrap();
json_file
.write_all(format!("{}\n", json).as_bytes())
.unwrap();
}
}};
}
#[cfg(test)]
macro_rules! write_output {
($index: expr, $stage: expr, $op: expr, $json: expr) => {{
if var_os("WRITE_FILE").is_some() {
use std::fs::OpenOptions;
let mut json_file = OpenOptions::new()
.append(true)
.open(&format!("{}.txt", $op))
.unwrap();
let index = $index;
let stage = $stage;
let op = $op;
let json = $json;
json_file
.write_all(format!("Output {} stage {} index {}\n", op, stage, index).as_bytes())
.unwrap();
json_file
.write_all(format!("{}\n", json).as_bytes())
.unwrap();
}
}};
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct KeyPairResult {
pub party_keys_vec: Vec<Keys>,
pub shared_keys_vec: Vec<SharedKeys>,
pub pk_vec: Vec<GE>,
pub y_sum: GE,
pub vss_scheme: VerifiableSS<GE>,
pub e_vec: Vec<EncryptionKey>,
pub h1_h2_N_tilde_vec: Vec<DLogStatement>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage1Input {
pub party_ek: paillier::EncryptionKey,
pub vss_scheme: VerifiableSS<GE>,
pub index: usize,
pub s_l: Vec<usize>,
pub shared_keys: SharedKeys,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage1Result {
pub sign_keys: SignKeys,
pub bc1: SignBroadcastPhase1,
pub decom1: SignDecommitPhase1,
pub m_a: (MessageA, BigInt),
}
// Signing stage 1.
// A sign operation happens between t+1 parties.
// The way the protocol works needs a t,t+1 share of the secret shares for all
// the participants taking part in signing.
// It also creates all the ephemeral values required for signing namely gamma_i, w_i. Those are represented by the
// SignKeys structure.
// It also creates the C, D messages for gamma_i and encrypts k_i with the Paillier key.
// Arguments:
// pk: Public key corresponding to the keypair
// vss_scheme_vec: Generated during keypair generation
// index: 0 based index for the partipant.
// s: list of participants taking part in signing.
// keypair_result: output of the key generation protocol.
pub fn sign_stage1(input: &SignStage1Input) -> SignStage1Result {
//ephemeral keys. w_i, gamma_i and k_i and the curve points for the same.
let l_sign_keys = SignKeys::create(
&input.shared_keys.x_i,
&input.vss_scheme,
input.index,
&input.s_l[..],
);
// Commitment for g^gamma_i
let (l_bc1, l_decom1) = l_sign_keys.phase1_broadcast();
// encryption of k_i
let l_m_a = MessageA::a(&l_sign_keys.k_i, &input.party_ek);
SignStage1Result {
sign_keys: l_sign_keys,
bc1: l_bc1,
decom1: l_decom1,
m_a: l_m_a,
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage2Input {
pub m_a_vec: Vec<MessageA>,
pub gamma_i: FE,
pub w_i: FE,
pub ek_vec: Vec<EncryptionKey>,
pub index: usize,
pub l_ttag: usize,
pub l_s: Vec<usize>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage2Result {
pub gamma_i_vec: Vec<(MessageB, FE)>,
pub w_i_vec: Vec<(MessageB, FE)>,
}
// This API will carry our the MtA for gamma_i MtAwc(Check happens later in stage3) for w_i
// This is basically a P2P between a participant and all it's peers.
pub fn sign_stage2(input: &SignStage2Input) -> Result<SignStage2Result, ErrorType> {
let mut res_gamma_i = vec![];
let mut res_w_i = vec![];
for j in 0..input.l_ttag - 1 {
let ind = if j < input.index { j } else { j + 1 };
let (m_b_gamma, beta_gamma, _beta_randomness, _beta_tag) = MessageB::b(
&input.gamma_i,
&input.ek_vec[input.l_s[ind]],
input.m_a_vec[ind].clone(),
);
// beta_gamma is secret value and needs to be encrypted with a key only know to party ind.
// See gg20_sign_client.rs for a demo of how this value is encrypted using a key shared
// between party input.index and party ind.
res_gamma_i.push((m_b_gamma, beta_gamma));
let (m_b_w, beta_wi, _beta_randomness, _beta_tag) = MessageB::b(
&input.w_i,
&input.ek_vec[input.l_s[ind]],
input.m_a_vec[ind].clone(),
);
// beta_wi is secret value and needs to be encrypted with a key only know to party ind.
// See gg20_sign_client.rs for a demo of how this value is encrypted using a key shared
// between party input.index and party ind.
res_w_i.push((m_b_w, beta_wi));
}
Ok(SignStage2Result {
gamma_i_vec: res_gamma_i,
w_i_vec: res_w_i,
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage3Result {
pub alpha_vec_gamma: Vec<FE>,
pub alpha_vec_w: Vec<FE>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage3Input {
pub dk_s: DecryptionKey,
pub k_i_s: FE,
pub m_b_gamma_s: Vec<MessageB>,
pub m_b_w_s: Vec<MessageB>,
pub g_w_i_s: Vec<GE>,
pub index_s: usize,
pub ttag_s: usize,
}
pub fn sign_stage3(input: &SignStage3Input) -> Result<SignStage3Result, Error> {
let mut res_alpha_vec_gamma = vec![];
let mut res_alpha_vec_w = vec![];
for i in 0..input.ttag_s - 1 {
let ind = if i < input.index_s { i } else { i + 1 };
let res = input.m_b_gamma_s[i].verify_proofs_get_alpha(&input.dk_s, &input.k_i_s)?;
res_alpha_vec_gamma.push(res.0);
let res = input.m_b_w_s[i].verify_proofs_get_alpha(&input.dk_s, &input.k_i_s)?;
if input.g_w_i_s[ind] != input.m_b_w_s[i].b_proof.pk {
println!("MtAwc did not work i = {} ind ={}", i, ind);
return Err(Error::InvalidCom);
}
res_alpha_vec_w.push(res.0);
}
Ok(SignStage3Result {
alpha_vec_gamma: res_alpha_vec_gamma,
alpha_vec_w: res_alpha_vec_w,
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage4Result {
pub delta_i: FE,
pub sigma_i: FE,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage4Input {
pub alpha_vec_s: Vec<FE>,
pub beta_vec_s: Vec<FE>,
pub miu_vec_s: Vec<FE>,
pub ni_vec_s: Vec<FE>,
pub sign_keys_s: SignKeys,
}
pub fn sign_stage4(input: &SignStage4Input) -> Result<SignStage4Result, ErrorType> {
Ok(SignStage4Result {
delta_i: input
.sign_keys_s
.phase2_delta_i(&input.alpha_vec_s[..], &input.beta_vec_s[..]),
sigma_i: input
.sign_keys_s
.phase2_sigma_i(&input.miu_vec_s[..], &input.ni_vec_s[..]),
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage5Input {
pub m_b_gamma_vec: Vec<MessageB>,
pub delta_inv: FE,
pub decom_vec1: Vec<SignDecommitPhase1>,
pub bc1_vec: Vec<SignBroadcastPhase1>,
pub index: usize,
pub sign_keys: SignKeys,
pub s_ttag: usize,
pub m_a: (MessageA, BigInt),
pub e_k: EncryptionKey,
pub h1_h2_N_tilde_vec: DLogStatement,
}
use crate::utilities::zk_pdl_with_slack::{PDLwSlackProof, PDLwSlackStatement, PDLwSlackWitness};
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage5Result {
pub R: GE,
pub R_dash: GE,
pub phase5_proof: PDLwSlackProof,
}
pub fn sign_stage5(input: &SignStage5Input) -> Result<SignStage5Result, ErrorType> {
let b_proof_vec = (0..input.s_ttag - 1)
.map(|j| &input.m_b_gamma_vec[j].b_proof)
.collect::<Vec<&DLogProof<GE>>>();
let check_Rvec_i = SignKeys::phase4(
&input.delta_inv,
&b_proof_vec,
input.decom_vec1.clone(),
&input.bc1_vec,
input.index,
);
if let Err(err) = check_Rvec_i {
println!("Error->{:?}", &err);
return Err(err);
}
let Rvec_i = check_Rvec_i.unwrap();
let Rdash_vec_i = Rvec_i * input.sign_keys.k_i;
let proof = LocalSignature::phase5_proof_pdl(
&Rdash_vec_i,
&Rvec_i,
&input.m_a.0.c,
&input.e_k,
&input.sign_keys.k_i,
&input.m_a.1,
&input.h1_h2_N_tilde_vec,
);
Ok(SignStage5Result {
R: Rvec_i,
R_dash: Rdash_vec_i,
phase5_proof: proof,
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage6Input {
pub R_dash_vec: Vec<GE>,
pub R_vec: Vec<GE>,
pub m_a_vec: Vec<MessageA>,
pub e_k_vec: Vec<EncryptionKey>,
pub k_i: FE,
pub h1_h2_N_tilde_vec: Vec<DLogStatement>,
pub s: Vec<usize>,
pub index: usize,
pub sign_key: SignKeys,
pub message_bn: BigInt,
pub sigma: FE,
pub ysum: GE,
pub phase5_proof_vec: Vec<PDLwSlackProof>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage6Result {
pub local_sig: LocalSignature,
}
pub fn sign_stage6(input: &SignStage6Input) -> Result<SignStage6Result, ErrorType> {
for j in 0..input.s.len() - 1 {
if j == input.index {
continue;
}
let ind = if j < input.index { j } else { j + 1 };
let phase5_verify_zk = LocalSignature::phase5_verify_pdl(
&input.phase5_proof_vec,
&input.R_dash_vec[input.index],
&input.R_vec[input.index],
&input.m_a_vec[input.index].c,
&input.e_k_vec[input.s[ind]],
&input.h1_h2_N_tilde_vec[..],
&input.s,
input.index,
);
if phase5_verify_zk.is_err() {
return Err(phase5_verify_zk.err().unwrap());
}
}
let phase5_check = LocalSignature::phase5_check_R_dash_sum(&input.R_dash_vec);
if phase5_check.is_err() {
return Err(ErrorType {
error_type: format!("phase5 R_dash_sum check failed {:?}", phase5_check),
bad_actors: vec![],
});
}
Ok(SignStage6Result {
local_sig: LocalSignature::phase7_local_sig(
&input.sign_key.k_i,
&input.message_bn,
&input.R_vec[input.index],
&input.sigma,
&input.ysum,
),
})
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage7Input {
pub local_sig_vec: Vec<LocalSignature>,
pub ysum: GE,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SignStage7Result {
pub local_sig: SignatureRecid,
}
pub fn sign_stage7(input: &SignStage7Input) -> Result<SignStage7Result, ErrorType> {
let s_vec: Vec<FE> = input.local_sig_vec.iter().map(|a| a.s_i).collect();
let res_sig = input.local_sig_vec[0].output_signature(&s_vec[1..]);
if res_sig.is_err() {
println!("error in combining sigs {:?}", res_sig.unwrap_err());
return Err(ErrorType {
error_type: "error in combining signatures".to_string(),
bad_actors: vec![],
});
}
let sig: SignatureRecid = res_sig.unwrap();
input
.local_sig_vec
.iter()
.for_each(|a| check_sig(&sig.r, &sig.s, &a.m, &input.ysum));
Ok(SignStage7Result { local_sig: sig })
}
pub fn check_sig(r: &FE, s: &FE, msg: &BigInt, pk: &GE) {
use secp256k1::{verify, Message, PublicKey, PublicKeyFormat, Signature};
let raw_msg = BigInt::to_bytes(&msg);
let mut msg: Vec<u8> = Vec::new(); // padding
msg.extend(vec![0u8; 32 - raw_msg.len()]);
msg.extend(raw_msg.iter());
let msg = Message::parse_slice(msg.as_slice()).unwrap();
let slice = pk.pk_to_key_slice();
let mut raw_pk = Vec::new();
if slice.len() != 65 {
// after curv's pk_to_key_slice return 65 bytes, this can be removed
raw_pk.insert(0, 4u8);
raw_pk.extend(vec![0u8; 64 - slice.len()]);
raw_pk.extend(slice);
} else {
raw_pk.extend(slice);
}
assert_eq!(raw_pk.len(), 65);
let pk = PublicKey::parse_slice(&raw_pk, Some(PublicKeyFormat::Full)).unwrap();
let mut compact: Vec<u8> = Vec::new();
let bytes_r = &r.get_element()[..];
compact.extend(vec![0u8; 32 - bytes_r.len()]);
compact.extend(bytes_r.iter());
let bytes_s = &s.get_element()[..];
compact.extend(vec![0u8; 32 - bytes_s.len()]);
compact.extend(bytes_s.iter());
let secp_sig = Signature::parse_slice(compact.as_slice()).unwrap();
let is_correct = verify(&msg, &secp_sig, &pk);
assert!(is_correct);
}
#[cfg(test)]
mod tests {
use super::*;
use curv::cryptographic_primitives::hashing::hash_sha256::HSha256;
use curv::cryptographic_primitives::hashing::traits::Hash;
use serde_json;
use std::env::var_os;
use std::fs::File;
use std::io::Write;
// Test the key generation protocol using random values for threshold and share count.
#[test]
fn test_keygen_orchestration() {
use rand::Rng;
let mut rng = rand::thread_rng();
let mut share_count_test: u16;
let mut threshold_test: u16;
for _count in 0..5 {
loop {
// 16 is just a randomly chosen value. Taking a guess as to how many shares would
// someone want for a key.
share_count_test = rng.gen::<u16>() % 16;
if share_count_test < 2 {
continue;
} else {
break;
}
}
loop {
threshold_test = rng.gen::<u16>() % share_count_test;
if threshold_test < 1 {
continue;
} else {
break;
}
}
println!(
" Input params. Threshold {} Share Count {}",
threshold_test, share_count_test
);
assert!(
keygen_orchestrator(Parameters {
share_count: share_count_test,
threshold: threshold_test,
})
.is_ok(),
" Test failed for Threshold {} Share Count {}",
threshold_test,
share_count_test
);
}
}
#[test]
fn test_sign_orchestration_all() {
let keypairs = keygen_orchestrator(Parameters {
share_count: 3,
threshold: 1,
})
.unwrap();
let msg: Vec<u8> = vec![44, 56, 78, 90, 100];
let mut s: Vec<usize> = vec![0, 1, 2];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
s = vec![0, 1];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
s = vec![1, 2];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
s = vec![0, 2];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
}
#[test]
fn test_sign_orchestration_selected() {
let keypairs = keygen_orchestrator(Parameters {
share_count: 3,
threshold: 1,
})
.unwrap();
let msg: Vec<u8> = vec![44, 56, 78, 90, 100];
let mut s: Vec<usize> = vec![0, 1];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
s = vec![1, 2];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
s = vec![0, 2];
let sign_result = orchestrate_sign(&s[..], &msg, &keypairs);
assert!(sign_result.is_ok());
}
// The Distributed key generation protocol can work with a broadcast channel.
// All the messages are exchanged p2p.
// On the contrary, the key generation process can be orchestrated as below.
// All the participants do some work on each stage and return some data.
// This data needs to be filtered/collated and sent back as an input to the next stage.
// This test helper is just a demonstration of the same.
//
pub fn keygen_orchestrator(params: Parameters) -> Result<KeyPairResult, ErrorType> {
let op = "keygen".to_string();
if var_os("WRITE_FILE").is_some() {
File::create(&format!("{}.txt", &op)).unwrap();
}
//
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. party_keys.u_i
// 2. party_keys.dk
let mut party_keys_vec_l = vec![];
// Nothing private in the commitment values.
let mut bc1_vec_l = vec![];
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. decommitment values in KeyGenDecommitMessage1 need to be encrypted until they are sent
let mut decom_vec_l = vec![];
// Nothing private in the below vector.
let mut h1_h2_N_tilde_vec_l = vec![];
for i in 0..params.share_count {
let input = KeyGenStage1Input { index: i as usize };
write_input!(i, 1, &op, serde_json::to_string_pretty(&input).unwrap());
let res = keygen_stage1(&input);
write_output!(i, 1, &op, serde_json::to_string_pretty(&res).unwrap());
party_keys_vec_l.push(res.party_keys_l);
bc1_vec_l.push(res.bc_com1_l);
decom_vec_l.push(res.decom1_l);
h1_h2_N_tilde_vec_l.push(res.h1_h2_N_tilde_l);
}
let mut vss_scheme_vec_l = vec![];
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. secret_shares_vec_l[i] -
// party.
let mut secret_shares_vec_l = vec![];
let mut index_vec = vec![];
for i in 0..params.share_count {
let input = KeyGenStage2Input {
index: i as usize,
params_s: params.clone(),
party_keys_s: party_keys_vec_l[i as usize].clone(),
bc1_vec_s: bc1_vec_l.clone(),
decom1_vec_s: decom_vec_l.clone(),
};
write_input!(i, 2, &op, serde_json::to_string_pretty(&input).unwrap());
let result_check = keygen_stage2(&input);
if let Err(err) = result_check {
return Err(err);
}
let res = result_check.unwrap();
write_output!(i, 2, &op, serde_json::to_string_pretty(&res).unwrap());
vss_scheme_vec_l.push(res.vss_scheme_s);
secret_shares_vec_l.push(res.secret_shares_s);
index_vec.push(res.index_s);
}
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. party_shares[party_num] - all shares in this vec belong to the party number party_num.
let party_shares = (0..params.share_count)
.map(|i| {
(0..params.share_count)
.map(|j| {
let vec_j = &secret_shares_vec_l[j as usize];
vec_j[i as usize]
})
.collect::<Vec<FE>>()
})
.collect::<Vec<Vec<FE>>>();
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. shared_keys_vec_l.x_i - Final shard for this ECDSA keypair.
let mut shared_keys_vec_l = vec![];
let mut dlog_proof_vec_l = vec![];
let y_vec = (0..params.share_count)
.map(|i| decom_vec_l[i as usize].y_i)
.collect::<Vec<GE>>();
for index in 0..params.share_count {
let input = KeyGenStage3Input {
party_keys_s: party_keys_vec_l[index as usize].clone(),
vss_scheme_vec_s: vss_scheme_vec_l.clone(),
secret_shares_vec_s: party_shares[index as usize].clone(),
y_vec_s: y_vec.clone(),
params_s: params.clone(),
index_s: index as usize,
};
write_input!(index, 3, &op, serde_json::to_string_pretty(&input).unwrap());
let result_check = keygen_stage3(&input);
if let Err(err) = result_check {
return Err(err);
}
let result = result_check.unwrap();
write_output!(
index,
3,
&op,
serde_json::to_string_pretty(&result).unwrap()
);
shared_keys_vec_l.push(result.shared_keys_s);
dlog_proof_vec_l.push(result.dlog_proof_s);
}
let pk_vec_l = (0..params.share_count)
.map(|i| dlog_proof_vec_l[i as usize].pk)
.collect::<Vec<GE>>();
let y_vec = (0..params.share_count)
.map(|i| decom_vec_l[i as usize].y_i)
.collect::<Vec<GE>>();
let mut y_vec_iter = y_vec.iter();
let head = y_vec_iter.next().unwrap();
let tail = y_vec_iter;
let y_sum_l = tail.fold(head.clone(), |acc, x| acc + x);
// In practice whenever this keypair will be used to sign it needs to be ensured that the below
// stage ran successfully.
// One way to do it would be to add a signature to the shared_keys_vec_l[i].x_i once this is
// verified.
let input_stage4 = KeyGenStage4Input {
params_s: params.clone(),
dlog_proof_vec_s: dlog_proof_vec_l.clone(),
y_vec_s: y_vec.clone(),
};
for index in 0..params.share_count {
write_input!(
index,
4,
&op,
serde_json::to_string_pretty(&input_stage4).unwrap()
);
keygen_stage4(&input_stage4)?;
}
// Important: This is only for test purposes. This code should never be executed in practice.
// x is the private key and all this work is done to never have that at one place in the clear.
let xi_vec = (0..=params.threshold)
.map(|i| shared_keys_vec_l[i as usize].x_i)
.collect::<Vec<FE>>();
let vss_scheme_for_test = vss_scheme_vec_l.clone();
let x = vss_scheme_for_test[0]
.clone()
.reconstruct(&index_vec[0..=(params.threshold as usize)], &xi_vec);
let sum_u_i = party_keys_vec_l
.iter()
.fold(FE::zero(), |acc, x| acc + x.u_i);
assert_eq!(x, sum_u_i);
// test code ends.
// public vector of paillier public keys
let e_vec_l = bc1_vec_l
.iter()
.map(|bc1| bc1.e.clone())
.collect::<Vec<EncryptionKey>>();
// At this point key generation is complete.
// shared_keys_vec contains the private key shares for all the participants.
Ok(KeyPairResult {
party_keys_vec: party_keys_vec_l,
shared_keys_vec: shared_keys_vec_l,
pk_vec: pk_vec_l,
y_sum: y_sum_l,
vss_scheme: vss_scheme_for_test[0].clone(),
e_vec: e_vec_l,
h1_h2_N_tilde_vec: h1_h2_N_tilde_vec_l,
})
}
pub fn orchestrate_sign(
s: &[usize],
bytes_to_sign: &[u8],
keypair_result: &KeyPairResult,
) -> Result<(), ErrorType> {
let op = "sign".to_string();
if var_os("WRITE_FILE").is_some() {
let mut json_file = File::create(&format!("{}.txt", &op)).unwrap();
json_file
.write_all(
format!(
"Keypair information\n{}\n",
serde_json::to_string_pretty(keypair_result).unwrap()
)
.as_bytes(),
)
.unwrap();
}
// ttag = is the number of signers involved in the protocol.
let ttag = s.len();
//
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. sign_keys_vec[i].w_i
// 2. sign_keys_vec[i].k_i
// 3. sign_keys_vec[i].gamma_i
let mut sign_keys_vec = vec![];
let mut bc1_vec = vec![];
//
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. decom1_vec[i] - This only needs to be revealed at stage 5 input.
let mut decom1_vec = vec![];
let mut m_a_vec: Vec<(MessageA, BigInt)> = vec![];
(0..ttag).map(|i| i).for_each(|i| {
let input = SignStage1Input {
vss_scheme: keypair_result.vss_scheme.clone(),
index: s[i],
s_l: s.to_vec(),
party_ek: keypair_result.party_keys_vec[s[i]].ek.clone(),
shared_keys: keypair_result.shared_keys_vec[s[i]].clone(),
};
write_input!(
i as u16,
1,
&op,
serde_json::to_string_pretty(&input).unwrap()
);
let res_stage1 = sign_stage1(&input);
write_output!(
i as u16,
1,
&op,
serde_json::to_string_pretty(&res_stage1).unwrap()
);
sign_keys_vec.push(res_stage1.sign_keys);
bc1_vec.push(res_stage1.bc1);
decom1_vec.push(res_stage1.decom1);
m_a_vec.push(res_stage1.m_a);
});
println!("Stage1 done");
let gamma_i_vec = (0..ttag)
.map(|i| sign_keys_vec[i].gamma_i)
.collect::<Vec<FE>>();
let w_i_vec = (0..ttag).map(|i| sign_keys_vec[i].w_i).collect::<Vec<FE>>();
let m_a_messagea_vec: Vec<MessageA> = m_a_vec.iter().map(|(a, _)| a.clone()).collect();
let mut res_stage2_vec: Vec<SignStage2Result> = vec![];
for i in 0..ttag {
let input = SignStage2Input {
m_a_vec: m_a_messagea_vec.clone(),
gamma_i: gamma_i_vec[i].clone(),
w_i: w_i_vec[i].clone(),
ek_vec: keypair_result.e_vec.clone(),
index: i,
l_ttag: ttag,
l_s: s.to_vec(),
};
write_input!(
i as u16,
2,
&op,
serde_json::to_string_pretty(&input).unwrap()
);
let res = sign_stage2(&input)?;
write_output!(
i as u16,
2,
&op,
serde_json::to_string_pretty(&res).unwrap()
);
res_stage2_vec.push(res);
}
println!("Stage2 done");
let mut m_b_gamma_vec_all = vec![vec![]; ttag];
let mut m_b_w_vec_all = vec![vec![]; ttag];
for i in 0..ttag {
for j in 0..ttag - 1 {
let ind = if j < i { j } else { j + 1 };
m_b_gamma_vec_all[ind].push(res_stage2_vec[i].gamma_i_vec[j].0.clone());
m_b_w_vec_all[ind].push(res_stage2_vec[i].w_i_vec[j].0.clone());
}
}
let mut res_stage3_vec: Vec<SignStage3Result> = vec![];
let g_wi_vec: Vec<GE> = (0..ttag).map(|a| sign_keys_vec[a].g_w_i).collect();
for i in 0..ttag {
let input = SignStage3Input {
dk_s: keypair_result.party_keys_vec[s[i]].dk.clone(),
k_i_s: sign_keys_vec[i].k_i.clone(),
m_b_gamma_s: m_b_gamma_vec_all[i].clone(),
m_b_w_s: m_b_w_vec_all[i].clone(),
index_s: i,
ttag_s: ttag,
g_w_i_s: g_wi_vec.clone(),
};
write_input!(
i as u16,
3,
&op,
serde_json::to_string_pretty(&input).unwrap()
);
let res = sign_stage3(&input);
if let Err(err) = res {
println!("stage 3 error.{:?}", err);
return Err(ErrorType {
error_type: "".to_string(),
bad_actors: vec![],
});
}
write_output!(
i as u16,
3,
&op,
serde_json::to_string_pretty(&(res.clone().unwrap())).unwrap()
);
res_stage3_vec.push(res.unwrap());
}
println!("Stage 3 done.");
//
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. beta_vec_all[i][..] - All these values are private to party i.
let mut beta_vec_all = vec![vec![]; ttag];
//
// Values to be kept private(Each value needs to be encrypted with a key only known to that
// party):
// 1. ni_vec_all[i][..] - All these values are private to party i.
let mut ni_vec_all = vec![vec![]; ttag];