-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsfutils.py
77 lines (62 loc) · 1.87 KB
/
sfutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
'''
Author: Samuel Wang
Date: 2021-10-21 15:57:23
Description:
'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale,MinMaxScaler
from pyforecaster.papa.client import get_model_forecaster_by_name,login
from qrutils.future_utils import get_X_and_snapshot_baptized
pd.set_option('display.max_columns',None)
from qrutils import log_return ,corr,calc_rolling_corr
from numba import jit
import warnings
def zero_divide(x,y):
with warnings.catch_warnings():
warnings.simplefilter('ignore')
res = np.divide(x,y)
if hasattr(y,"__len__"):
res[y ==0]=0
elif y==0:
res = 0
return res
def replace_outliers(df):
outlier_indices = []
# 1st quartile (25%)
Q1 = np.percentile(df, 25)
# 3rd quartile (75%)
Q3 = np.percentile(df, 75)
# Interquartile range (IQR)
IQR = Q3 - Q1
# outlier step
outlier_step = 1.5 * IQR
for nu in range(len(df)):
if (df[nu] < Q1 - outlier_step):
df[nu] = Q1-outlier_step
elif df[nu] > Q3 +outlier_step:
df[nu] = Q3+outlier_step
return df
def xy_finder(x,y,thres,reverse = False):
if reverse == False:
if type(thres)!= list:
if thres>0:
idx = np.where(x>thres)[0]
else:
idx = np.where(x<thres)[0]
return y[idx]
elif len(thres)==2:
idx = list(set(np.where(thres[0]<x)) & set(np.where(x<thres[1])))
return y[idx]
else:
if type(thres)!= list:
if thres>0:
idx = np.where(y>thres)[0]
return x[idx]
else:
idx = np.where(y>thres)[0]
return x[idx]
elif len(thres)==2:
idx = list(set(np.where(thres[0]<y)) & set(np.where(y<thres[1])))
return x[idx]