-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmodels.py
197 lines (150 loc) · 6.64 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn.functional as F
from torch import nn
class RnnModel(nn.Module):
"""
An RNN model using either RNN, LSTM or GRU cells.
"""
def __init__(self, input_dim, output_dim, hidden_size, dropout_p, cell_type):
super(RnnModel, self).__init__()
self.output_dim = output_dim
self.hidden_size = hidden_size
self.cell_type = cell_type
self.dropout = nn.Dropout(dropout_p)
if cell_type == 'LSTM':
self.encoder = nn.LSTM(input_dim, hidden_size)
elif cell_type == 'GRU':
self.encoder = nn.GRU(input_dim, hidden_size)
elif cell_type == 'RNN':
self.encoder = nn.RNN(input_dim, hidden_size)
self.out = nn.Linear(hidden_size, output_dim)
def forward(self, input_seq, hidden_state):
input_seq = self.dropout(input_seq)
encoder_outputs, _ = self.encoder(input_seq, hidden_state)
score_seq = self.out(encoder_outputs[-1, :, :])
dummy_attn_weights = torch.zeros(input_seq.shape[1], input_seq.shape[0])
return score_seq, dummy_attn_weights # No attention weights
def init_hidden(self, batch_size):
if self.cell_type == 'LSTM':
h_init = torch.zeros(1, batch_size, self.hidden_size)
c_init = torch.zeros(1, batch_size, self.hidden_size)
return (h_init, c_init)
elif self.cell_type == 'GRU':
return torch.zeros(1, batch_size, self.hidden_size)
elif self.cell_type == 'RNN':
return torch.zeros(1, batch_size, self.hidden_size)
class AttentionModel(nn.Module):
"""
A temporal attention model using an LSTM encoder.
"""
def __init__(self, seq_length, input_dim, output_dim, hidden_size, dropout_p):
super(AttentionModel, self).__init__()
self.hidden_size = hidden_size
self.seq_length = seq_length
self.output_dim = output_dim
self.encoder = nn.LSTM(input_dim, hidden_size)
self.attn = nn.Linear(hidden_size, seq_length)
self.dropout = nn.Dropout(dropout_p)
self.out = nn.Linear(hidden_size, output_dim)
def forward(self, input_seq, hidden_state):
input_seq = self.dropout(input_seq)
encoder_outputs, (h, _) = self.encoder(input_seq, hidden_state)
attn_applied, attn_weights = self.attention(encoder_outputs, h)
score_seq = self.out(attn_applied.reshape(-1, self.hidden_size))
return score_seq, attn_weights
def attention(self, encoder_outputs, hidden):
attn_weights = F.softmax(torch.squeeze(self.attn(hidden)), dim=1)
attn_weights = torch.unsqueeze(attn_weights, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
attn_applied = torch.bmm(attn_weights, encoder_outputs)
return attn_applied, torch.squeeze(attn_weights)
def init_hidden(self, batch_size):
h_init = torch.zeros(1, batch_size, self.hidden_size)
c_init = torch.zeros(1, batch_size, self.hidden_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
h_init = h_init.to(device)
c_init = c_init.to(device)
return (h_init, c_init)
class DaRnnModel(nn.Module):
"""
A Dual-Attention RNN model, attending over both the input at each timestep
and all hidden states of the encoder to make the final prediction.
"""
def __init__(self, seq_length, input_dim, output_dim, hidden_size, dropout_p):
super(DaRnnModel, self).__init__()
self.n = input_dim
self.m = hidden_size
self.T = seq_length
self.output_dim = output_dim
self.dropout = nn.Dropout(dropout_p)
self.encoder = nn.LSTM(self.n, self.m)
self.We = nn.Linear(2 * self.m, self.T)
self.Ue = nn.Linear(self.T, self.T)
self.ve = nn.Linear(self.T, 1)
self.Ud = nn.Linear(self.m, self.m)
self.vd = nn.Linear(self.m, 1)
self.out = nn.Linear(self.m, output_dim)
def forward(self, x, hidden_state):
x = self.dropout(x)
h_seq = []
for t in range(self.T):
x_tilde, _ = self.input_attention(x, hidden_state, t)
ht, hidden_state = self.encoder(x_tilde, hidden_state)
h_seq.append(ht)
h = torch.cat(h_seq, dim=0)
c, beta = self.temporal_attention(h)
logits = self.out(c)
return logits, torch.squeeze(beta)
def input_attention(self, x, hidden_state, t):
x = x.permute(1, 2, 0)
h, c = hidden_state
h = h.permute(1, 0, 2)
c = c.permute(1, 0, 2)
hc = torch.cat([h, c], dim=2)
e = self.ve(torch.tanh(self.We(hc) + self.Ue(x)))
e = torch.squeeze(e)
alpha = F.softmax(e, dim=1)
xt = x[:, :, t]
x_tilde = alpha * xt
x_tilde = torch.unsqueeze(x_tilde, 0)
return x_tilde, alpha
def temporal_attention(self, h):
h = h.permute(1, 0, 2)
l = self.vd(torch.tanh((self.Ud(h))))
l = torch.squeeze(l)
beta = F.softmax(l, dim=1)
beta = torch.unsqueeze(beta, 1)
c = torch.bmm(beta, h)
c = torch.squeeze(c)
return c, beta
def init_hidden(self, batch_size):
h_init = torch.zeros(1, batch_size, self.m)
c_init = torch.zeros(1, batch_size, self.m)
return (h_init, c_init)
class TransformerModel(nn.Module):
"""
A temporal attention model using an Transformer encoder.
"""
def __init__(self, input_dim, output_dim, dropout_p):
super(TransformerModel, self).__init__()
self.input_dim = input_dim # 100
self.output_dim = output_dim # 2
self.hidden_size = 128
self.dropout = nn.Dropout(dropout_p)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=5)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
self.fnn = nn.Linear(input_dim, output_dim)
def forward(self, input_seq, hidden_state):
out = self.dropout(input_seq)
out = self.transformer_encoder(out)
# out = torch.sum(out, 0)
out = out[-1, :, :]
out = self.fnn(out)
return out, out
def init_hidden(self, batch_size):
h_init = torch.zeros(1, batch_size, self.hidden_size)
c_init = torch.zeros(1, batch_size, self.hidden_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
h_init = h_init.to(device)
c_init = c_init.to(device)
return (h_init, c_init)