-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrans_data.py
53 lines (43 loc) · 2.12 KB
/
trans_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from collections import defaultdict
import json
import re
import ast
# 读取原始数据
with open("cpwsslsc/doc/generated_predictions-fu.jsonl", "r", encoding="utf-8") as f:
data1 = [json.loads(line) for line in f]
with open("test_fu.json", "r", encoding="utf-8") as f:
data2 = [json.loads(line) for line in f]
data2 = {re.search(r"案件编号:(\d+)", item["instruction"]).group(1): item["input"] for item in data2}
# 使用defaultdict来暂存合并后的数据
merged_data = defaultdict(dict)
for item in data1:
#使用正则表达式提取案件编号
match = re.search(r"案件编号:(\d+)", item["prompt"])
data_id = match.group(1)
merged_data[data_id]["id"] = data_id
merged_data[data_id]["fact"] = data2[data_id].split("事实部分:", 1)[-1]
# 将每个部分的 predict 放入 answers 中对应的 key
if "判决结果" in item["predict"]:
merged_data[data_id]["judgement"] = item["predict"].split("判决结果部分:", 1)[-1]
elif "案由部分" in item["predict"]:
merged_data[data_id]["cause"] = ast.literal_eval(re.search(r"案由部分:(\[.*?\])", item["predict"]).group(1))
elif "判决说理" in item["predict"]:
merged_data[data_id]["reasoning"] = item["predict"].split("判决说理部分:", 1)[-1]
elif "伦理或法理" in item["predict"]:
merged_data[data_id]["ethics_or_jurisprudence"] = ast.literal_eval(item["predict"].split("伦理或法理部分:", 1)[-1])
# 转换为最终合并后的数据列表,且仅保留指定字段
final_data = []
for data_id, fields in merged_data.items():
# 只保留需要的字段
final_item = {
"id": fields.get("id", ""),
"fact": fields.get("fact", ""),
"reasoning": fields.get("reasoning", ""),
"judgement": fields.get("judgement", ""),
"cause": fields.get("cause", ""),
# "ethics_or_jurisprudence": fields.get("ethics_or_jurisprudence", "")
}
final_data.append(final_item)
#写入json文件
with open("cpwsslsc/doc/test-fu-new.json", "w", encoding="utf-8") as f:
json.dump(final_data, f, ensure_ascii=False, indent=4)