forked from chou141253/FGVC-PIM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
297 lines (240 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch.nn as nn
import torch.nn.functional as F
import contextlib
import wandb
import warnings
from models.builder import MODEL_GETTER
from data.dataset import build_loader
from utils.costom_logger import timeLogger
from utils.config_utils import load_yaml, build_record_folder, get_args
from utils.lr_schedule import cosine_decay, adjust_lr, get_lr
from eval import evaluate, cal_train_metrics
warnings.simplefilter("ignore")
def eval_freq_schedule(args, epoch: int):
if epoch >= args.max_epochs * 0.95:
args.eval_freq = 1
elif epoch >= args.max_epochs * 0.9:
args.eval_freq = 1
elif epoch >= args.max_epochs * 0.8:
args.eval_freq = 2
def set_environment(args, tlogger):
print("Setting Environment...")
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
### = = = = Dataset and Data Loader = = = =
tlogger.print("Building Dataloader....")
train_loader, val_loader = build_loader(args)
if train_loader is None and val_loader is None:
raise ValueError("Find nothing to train or evaluate.")
if train_loader is not None:
print(" Train Samples: {} (batch: {})".format(len(train_loader.dataset), len(train_loader)))
else:
# raise ValueError("Build train loader fail, please provide legal path.")
print(" Train Samples: 0 ~~~~~> [Only Evaluation]")
if val_loader is not None:
print(" Validation Samples: {} (batch: {})".format(len(val_loader.dataset), len(val_loader)))
else:
print(" Validation Samples: 0 ~~~~~> [Only Training]")
tlogger.print()
### = = = = Model = = = =
tlogger.print("Building Model....")
model = MODEL_GETTER[args.model_name](
use_fpn = args.use_fpn,
fpn_size = args.fpn_size,
use_selection = args.use_selection,
num_classes = args.num_classes,
num_selects = args.num_selects,
use_combiner = args.use_combiner,
) # about return_nodes, we use our default setting
if args.pretrained is not None:
checkpoint = torch.load(args.pretrained, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
else:
start_epoch = 0
# model = torch.nn.DataParallel(model, device_ids=None) # device_ids : None --> use all gpus.
model.to(args.device)
tlogger.print()
"""
if you have multi-gpu device, you can use torch.nn.DataParallel in single-machine multi-GPU
situation and use torch.nn.parallel.DistributedDataParallel to use multi-process parallelism.
more detail: https://pytorch.org/tutorials/beginner/dist_overview.html
"""
if train_loader is None:
return train_loader, val_loader, model, None, None, None, None
### = = = = Optimizer = = = =
tlogger.print("Building Optimizer....")
if args.optimizer == "SGD":
optimizer = torch.optim.SGD(model.parameters(), lr=args.max_lr, nesterov=True, momentum=0.9, weight_decay=args.wdecay)
elif args.optimizer == "AdamW":
optimizer = torch.optim.AdamW(model.parameters(), lr=args.max_lr)
if args.pretrained is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
tlogger.print()
schedule = cosine_decay(args, len(train_loader))
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
amp_context = torch.cuda.amp.autocast
else:
scaler = None
amp_context = contextlib.nullcontext
return train_loader, val_loader, model, optimizer, schedule, scaler, amp_context, start_epoch
def train(args, epoch, model, scaler, amp_context, optimizer, schedule, train_loader):
optimizer.zero_grad()
total_batchs = len(train_loader) # just for log
show_progress = [x/10 for x in range(11)] # just for log
progress_i = 0
for batch_id, (ids, datas, labels) in enumerate(train_loader):
model.train()
""" = = = = adjust learning rate = = = = """
iterations = epoch * len(train_loader) + batch_id
adjust_lr(iterations, optimizer, schedule)
batch_size = labels.size(0)
""" = = = = forward and calculate loss = = = = """
datas, labels = datas.to(args.device), labels.to(args.device)
with amp_context():
"""
[Model Return]
FPN + Selector + Combiner --> return 'layer1', 'layer2', 'layer3', 'layer4', ...(depend on your setting)
'preds_0', 'preds_1', 'comb_outs'
FPN + Selector --> return 'layer1', 'layer2', 'layer3', 'layer4', ...(depend on your setting)
'preds_0', 'preds_1'
FPN --> return 'layer1', 'layer2', 'layer3', 'layer4' (depend on your setting)
~ --> return 'ori_out'
[Retuen Tensor]
'preds_0': logit has not been selected by Selector.
'preds_1': logit has been selected by Selector.
'comb_outs': The prediction of combiner.
"""
outs = model(datas)
loss = 0.
for name in outs:
if "select_" in name:
if not args.use_selection:
raise ValueError("Selector not use here.")
if args.lambda_s != 0:
S = outs[name].size(1)
logit = outs[name].view(-1, args.num_classes).contiguous()
loss_s = nn.CrossEntropyLoss()(logit,
labels.unsqueeze(1).repeat(1, S).flatten(0))
loss += args.lambda_s * loss_s
else:
loss_s = 0.0
elif "drop_" in name:
if not args.use_selection:
raise ValueError("Selector not use here.")
if args.lambda_n != 0:
S = outs[name].size(1)
logit = outs[name].view(-1, args.num_classes).contiguous()
n_preds = nn.Tanh()(logit)
labels_0 = torch.zeros([batch_size * S, args.num_classes]) - 1
labels_0 = labels_0.to(args.device)
loss_n = nn.MSELoss()(n_preds, labels_0)
loss += args.lambda_n * loss_n
else:
loss_n = 0.0
elif "layer" in name:
if not args.use_fpn:
raise ValueError("FPN not use here.")
if args.lambda_b != 0:
### here using 'layer1'~'layer4' is default setting, you can change to your own
loss_b = nn.CrossEntropyLoss()(outs[name].mean(1), labels)
loss += args.lambda_b * loss_b
else:
loss_b = 0.0
elif "comb_outs" in name:
if not args.use_combiner:
raise ValueError("Combiner not use here.")
if args.lambda_c != 0:
loss_c = nn.CrossEntropyLoss()(outs[name], labels)
loss += args.lambda_c * loss_c
elif "ori_out" in name:
loss_ori = F.cross_entropy(outs[name], labels)
loss += loss_ori
loss /= args.update_freq
""" = = = = calculate gradient = = = = """
if args.use_amp:
scaler.scale(loss).backward()
else:
loss.backward()
""" = = = = update model = = = = """
if (batch_id + 1) % args.update_freq == 0:
if args.use_amp:
scaler.step(optimizer)
scaler.update() # next batch
else:
optimizer.step()
optimizer.zero_grad()
""" log (MISC) """
if args.use_wandb and ((batch_id + 1) % args.log_freq == 0):
model.eval()
msg = {}
msg['info/epoch'] = epoch + 1
msg['info/lr'] = get_lr(optimizer)
cal_train_metrics(args, msg, outs, labels, batch_size)
wandb.log(msg)
train_progress = (batch_id + 1) / total_batchs
# print(train_progress, show_progress[progress_i])
if train_progress > show_progress[progress_i]:
print(".."+str(int(show_progress[progress_i] * 100)) + "%", end='', flush=True)
progress_i += 1
def main(args, tlogger):
"""
save model last.pt and best.pt
"""
train_loader, val_loader, model, optimizer, schedule, scaler, amp_context, start_epoch = set_environment(args, tlogger)
best_acc = 0.0
best_eval_name = "null"
if args.use_wandb:
wandb.init(entity=args.wandb_entity,
project=args.project_name,
name=args.exp_name,
config=args)
wandb.run.summary["best_acc"] = best_acc
wandb.run.summary["best_eval_name"] = best_eval_name
wandb.run.summary["best_epoch"] = 0
for epoch in range(start_epoch, args.max_epochs):
"""
Train
"""
if train_loader is not None:
tlogger.print("Start Training {} Epoch".format(epoch+1))
train(args, epoch, model, scaler, amp_context, optimizer, schedule, train_loader)
tlogger.print()
else:
from eval import eval_and_save
eval_and_save(args, model, val_loader)
break
eval_freq_schedule(args, epoch)
model_to_save = model.module if hasattr(model, "module") else model
checkpoint = {"model": model_to_save.state_dict(), "optimizer": optimizer.state_dict(), "epoch":epoch}
torch.save(checkpoint, args.save_dir + "backup/last.pt")
if epoch == 0 or (epoch + 1) % args.eval_freq == 0:
"""
Evaluation
"""
acc = -1
if val_loader is not None:
tlogger.print("Start Evaluating {} Epoch".format(epoch + 1))
acc, eval_name, accs = evaluate(args, model, val_loader)
tlogger.print("....BEST_ACC: {}% ({}%)".format(max(acc, best_acc), acc))
tlogger.print()
if args.use_wandb:
wandb.log(accs)
if acc > best_acc:
best_acc = acc
best_eval_name = eval_name
torch.save(checkpoint, args.save_dir + "backup/best.pt")
if args.use_wandb:
wandb.run.summary["best_acc"] = best_acc
wandb.run.summary["best_eval_name"] = best_eval_name
wandb.run.summary["best_epoch"] = epoch + 1
if __name__ == "__main__":
tlogger = timeLogger()
tlogger.print("Reading Config...")
args = get_args()
assert args.c != "", "Please provide config file (.yaml)"
load_yaml(args, args.c)
build_record_folder(args)
tlogger.print()
main(args, tlogger)