forked from chou141253/FGVC-PIM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheat.py
141 lines (113 loc) · 4.68 KB
/
heat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import argparse
import warnings
from utils.config_utils import load_yaml
from models.builder import MODEL_GETTER
from utils.costom_logger import timeLogger
warnings.simplefilter("ignore")
def simple_grad_cam(features, classifier, target_class):
"""
calculate gradient map.
"""
features = nn.Parameter(features)
logits = torch.matmul(features, classifier)
logits[0, :, :, target_class].sum().backward()
features_grad = features.grad[0].sum(0).sum(0).unsqueeze(0).unsqueeze(0)
gramcam = F.relu(features_grad * features[0])
gramcam = gramcam.sum(-1)
gramcam = (gramcam - torch.min(gramcam)) / (torch.max(gramcam) - torch.min(gramcam))
return gramcam
def get_heat(model, img):
# only need forward backbone
with torch.no_grad():
outs = model.forward_backbone(img.unsqueeze(0))
features = []
for name in outs:
features.append(outs[name][0])
layer_weights = [8, 4, 2, 1]
heatmap = np.zeros([args.data_size, args.data_size, 3])
for i in range(len(features)):
f = features[i]
f = f.cpu()
if len(f.size()) == 2:
S = int(f.size(0) ** 0.5)
f = f.view(S, S, -1)
# if you use original backbone without our module,
# please set classifier to your model's classifier. (e.g. model.classifier)
gramcam = simple_grad_cam(f.unsqueeze(0), classifier=torch.ones(f.size(-1), 200)/f.size(-1), target_class=args.target_class)
gramcam = gramcam.detach().numpy()
gramcam = cv2.resize(gramcam, (args.data_size, args.data_size))
# heatmap colour : red
heatmap[:, :, 2] += layer_weights[i] * gramcam
heatmap = heatmap / sum(layer_weights)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
heatmap[heatmap < args.threshold] = 0 # threshold
heatmap *= 255
heatmap = heatmap.astype(np.uint8)
return heatmap
if __name__ == "__main__":
parser = argparse.ArgumentParser("PIM-FGVC Heatmap Generation")
parser.add_argument("--c", default="", type=str)
parser.add_argument("--img", default="", type=str)
parser.add_argument("--target_class", default=0, type=int)
parser.add_argument("--threshold", default=0.75, type=float)
parser.add_argument("--save_img", default="", type=str, help="save path")
parser.add_argument("--pretrained", default="", type=str)
parser.add_argument("--model_name", default="swin-t", type=str, choices=["swin-t", "resnet50", "vit", "efficient"])
args = parser.parse_args()
assert args.c != "", "Please provide config file (.yaml)"
args = parser.parse_args()
load_yaml(args, args.c)
assert args.pretrained != ""
model = MODEL_GETTER[args.model_name](
use_fpn = args.use_fpn,
fpn_size = args.fpn_size,
use_selection = args.use_selection,
num_classes = args.num_classes,
num_selects = args.num_selects,
use_combiner = args.use_combiner,
) # about return_nodes, we use our default setting
### load model
checkpoint = torch.load(args.pretrained, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model'])
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(args.device)
### read image and convert image to tensor
img_transforms = transforms.Compose([
transforms.Resize((510, 510), Image.BILINEAR),
transforms.CenterCrop((args.data_size, args.data_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
img = cv2.imread(args.img)
img = img[:, :, ::-1] # BGR to RGB.
# to PIL.Image
img = Image.fromarray(img)
img = img_transforms(img)
img = img.to(args.device)
# get heatmap and original image
heatmap = get_heat(model, img)
rgb_img = cv2.imread(args.img)
rgb_img = cv2.resize(rgb_img, (510, 510))
pad_size = (510 - args.data_size) // 2
rgb_img = rgb_img[pad_size:-pad_size, pad_size:-pad_size]
mix = rgb_img * 0.5 + heatmap * 0.5
mix = mix.astype(np.uint8)
# cv2.namedWindow('heatmap', 0)
# cv2.imshow('heatmap', heatmap)
# cv2.namedWindow('rgb_img', 0)
# cv2.imshow('rgb_img', rgb_img)
# cv2.namedWindow('mix', 0)
# cv2.imshow('mix', mix)
# cv2.watiKey(0)
if args.save_img != "":
cv2.imwrite(args.save_img + "/heatmap.jpg", heatmap)
cv2.imwrite(args.save_img + "/rbg_img.jpg", rgb_img)
cv2.imwrite(args.save_img + "/mix.jpg", mix)