-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpredict.py
45 lines (37 loc) · 1.56 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import argparse
import time
from pathlib import Path
from utils import load_setting, load_tokenizer
from models import SwinTransformerOCR
from dataset import CustomCollate
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--setting", "-s", type=str, default="settings/default.yaml",
help="Experiment settings")
parser.add_argument("--target", "-t", type=str, required=True,
help="OCR target (image or directory)")
parser.add_argument("--tokenizer", "-tk", type=str, required=True,
help="Load pre-built tokenizer")
parser.add_argument("--checkpoint", "-c", type=str, required=True,
help="Load model weight in checkpoint")
args = parser.parse_args()
cfg = load_setting(args.setting)
cfg.update(vars(args))
print("setting:", cfg)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load
tokenizer = load_tokenizer(cfg.tokenizer)
model = SwinTransformerOCR(cfg, tokenizer)
saved = torch.load(cfg.checkpoint, map_location=device)
model.load_state_dict(saved['state_dict'])
collate = CustomCollate(cfg, tokenizer=tokenizer)
target = Path(cfg.target)
if target.is_dir():
target = list(target.glob("*.jpg")) + list(target.glob("*.png"))
else:
target = [target]
for image_fn in target:
start = time.time()
x = collate.ready_image(image_fn)
print("[{}]sec | image_fn : {}".format(time.time()-start, model.predict(x)))