-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (50 loc) · 2.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import time
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from dataset.datasets import create_dataset
from evaluate import evaluate
from model import build
from train import train_one_epoch
from util.misc import collate_fn, override_options, save_checkpoint, build_lr_scheduler
from util.option import get_opts
if __name__ == "__main__":
opts = get_opts() # get the options
checkpoint = None
if opts.resume is not None: # continue training
checkpoint = torch.load(opts.resume, map_location='cpu')
override_options(opts, checkpoint) # override some options with the checkpoint
# prepare the dataset
dataset_train, dataset_val = create_dataset(opts.dataset_root, opts.dataset_name)
dataloader_train = DataLoader(dataset_train, batch_size=opts.batch_size, shuffle=True, drop_last=False,
collate_fn=collate_fn)
dataloader_val = DataLoader(dataset_val, batch_size=opts.batch_size, shuffle=False, drop_last=False,
collate_fn=collate_fn)
# prepare the model, criterion, optimizer, lr_scheduler, writer
model = build(opts)
optimizer = torch.optim.Adam(model.parameters(), lr=opts.lr)
lr_scheduler = build_lr_scheduler(optimizer, opts.warmup_epochs * len(dataloader_train),
opts.epochs * len(dataloader_train))
writer = SummaryWriter(opts.log_dir)
# load the parameters to continue training
if checkpoint is not None:
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
print("Start training...")
for epoch in range(opts.start_epoch, opts.epochs):
print("epoch {} start...".format(epoch))
start_time = time.time()
try:
# train for one epoch
train_one_epoch(model, dataloader_train, optimizer, lr_scheduler, epoch, writer)
# evaluate on the val dataset
evaluate(opts.dataset_name, model, dataloader_val, epoch, writer)
except Exception as e:
raise e
finally:
# save the checkpoint
save_checkpoint(opts, model, optimizer, lr_scheduler, epoch)
end_time = time.time()
print("epoch {} cost: {}s".format(epoch, end_time - start_time))
writer.close() # close the writer to make sure that all events have been written to disk