-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_file_old.py
362 lines (311 loc) · 18.2 KB
/
web_file_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import io
import json
import os
import sys
import webbrowser
import pandas as pd
from flask import Flask, request, render_template, redirect
from Shell_EDA import Shell_EDA
from Shell_Ensemble import Shell_Ensemble
from Shell_LightGBM import Shell_LGBM
from Shell_SARIMAX import Shell_SARIMAX
app = Flask(__name__)
webbrowser.open('http://127.0.0.1:5000')
console_output = []
progress = 0
is_training_complete = False
# Get the absolute path of the script
script_dir = os.path.dirname(os.path.abspath(__file__)).replace("\\", "/")
# Print the script directory path
print("Script directory path:", script_dir)
@app.route("/", methods=['GET'])
def hello():
return render_template('Shell_Cashflow.html')
@app.route("/forecast", methods=['POST'])
def forecast():
# Handle the form submission and generate the forecast
# Retrieve the form data
csv_file = request.files['csv-file']
csv_file = pd.read_csv(csv_file)
csv_file.to_csv('static/train_dataset.csv')
grid_search_lightgbm = request.form.get('grid-search-lightgbm', False)
grid_search_arima = request.form.get('grid-search-arima', False)
model_selection = request.form.get('model-selection')
try:
sarimax_parameters = {
'p-value': int(request.form.get('p-value-1')),
'q-value': int(request.form.get('q-value-1')),
'd-value': int(request.form.get('d-value-1')),
'P-value': int(request.form.get('P-value-2')),
'D-value': int(request.form.get('D-value-2')),
'Q-value': int(request.form.get('Q-value-2')),
's-value': int(request.form.get('s-value-2')),
}
except:
sarimax_parameters = {
'p-value': request.form.get('p-value-1'),
'q-value': request.form.get('q-value-1'),
'd-value': request.form.get('d-value-1'),
'P-value': request.form.get('P-value-2'),
'D-value': request.form.get('D-value-2'),
'Q-value': request.form.get('Q-value-2'),
's-value': request.form.get('s-value-2'),
}
try:
lightgbm_parameters = {'num_leaves': int(request.form.get('num_leaves')),
'max_depth': int(request.form.get('max_depth')),
'learning_rate': float(request.form.get('learning_rate')),
'colsample_bytree': float(request.form.get('colsample_bytree')),
'subsample': float(request.form.get('subsample')),
'reg_alpha': float(request.form.get('reg_alpha')),
'reg_lambda': float(request.form.get('reg_lambda')),
'n_estimators': int(request.form.get('n_estimators')),
'random_state': int(request.form.get('random_state')),
'num_iterations': int(request.form.get('num_iterations'))}
except:
lightgbm_parameters = {'num_leaves': request.form.get('num_leaves'),
'max_depth': request.form.get('max_depth'),
'learning_rate': request.form.get('learning_rate'),
'colsample_bytree': request.form.get('colsample_bytree'),
'subsample': request.form.get('subsample'),
'reg_alpha': request.form.get('reg_alpha'),
'reg_lambda': request.form.get('reg_lambda'),
'n_estimators': request.form.get('n_estimators'),
'random_state': request.form.get('random_state'),
'num_iterations': request.form.get('num_iterations')}
training_start_date_sarimax = request.form.get('training-start-date-sarimax')
training_end_date_sarimax = request.form.get('training-end-date-sarimax')
training_start_date_lightgbm = request.form.get('training-start-date-lightgbm')
training_end_date_lightgbm = request.form.get('training-end-date-lightgbm')
test_start_date = request.form.get('test-start-date')
test_end_date = request.form.get('test-end-date')
eda_flag = request.form.get('analysis-flag')
print(eda_flag)
full_train = {"filepath": "static",
"csv_file_name": "train_dataset.csv",
"grid_search_lightgbm": grid_search_lightgbm,
"grid_search_arima": grid_search_arima,
"model_selection": model_selection,
"sarimax_parameters": sarimax_parameters,
"lightgbm_parameters": lightgbm_parameters,
"training_start_date_sarimax": training_start_date_sarimax,
"training_end_date_sarimax": training_end_date_sarimax,
"training_start_date_lightgbm": training_start_date_lightgbm,
"training_end_date_lightgbm": training_end_date_lightgbm,
"test_start_date": test_start_date,
"test_end_date": test_end_date,
"eda_flag": eda_flag}
with open('static/full_train.json', 'w') as fp:
json.dump(full_train, fp)
# Process the form data and generate the forecast
if eda_flag == "True":
return redirect('/eda')
else:
return redirect('/forecast_start')
@app.route("/eda", methods=['GET'])
def eda_start():
response_1 = {}
return render_template('Shell_Eda.html', response=response_1)
@app.route("/eda", methods=['POST'])
def eda():
# Handle the form submission in Shell_Eda.html
# Retrieve the form data and perform the desired operations
csv_file = request.files['csv-file']
eda_dataset = pd.read_csv(csv_file)
eda_dataset.to_csv('static/eda_dataset.csv')
# Process the data and perform the necessary operations
shell_data_eda = Shell_EDA(filepath="static",
train_set_name="eda_dataset.csv",
column_name="Net Cashflow from Operations",
start_date="2021-01-01",
end_date=None,
output_path=f"static", )
shell_data_eda.read_data()
acf_pacf_path = shell_data_eda.acf_pacf()
seasonal_decomp_path = shell_data_eda.decompose()
info_path_1 = shell_data_eda.information()
mean_std_plot_path = shell_data_eda.mean_std_plot()
df_test_path = shell_data_eda.DF_test()
seasonal_decomp_path_2 = shell_data_eda.seasonal_decomp()
order_1_path, order_2_path, order_3_path = shell_data_eda.ordered_pacf_acf()
response = {
'acfpacfPlotPath': acf_pacf_path,
'seasonalDecompPlotPath': seasonal_decomp_path,
'pandasInfoDescribe': info_path_1,
'meanStdPlotPath': mean_std_plot_path,
'dickeyFullerTest': df_test_path,
'seasonalDecompPlotPath2': seasonal_decomp_path_2,
'orderedPacfAcfPlotsPath': [order_1_path, order_2_path, order_3_path]
}
with open('static/response.json', 'w') as fp:
json.dump(response, fp)
return render_template('Shell_Eda.html', response=response)
@app.route('/forecast_start', methods=['GET'])
def index():
response_output = {}
return render_template('Shell_Forecast_Finish.html', response=response_output)
@app.route("/forecast_start", methods=['POST'])
def forecast_start():
# render_template('Shell_Forecast_Finish.html')
global console_output, progress, is_training_complete
# Reset training progress
console_output = []
progress = 0
is_training_complete = 0
output_buffer = io.StringIO()
sys.stdout = output_buffer
with open('static/full_train.json') as f:
full_train = json.load(f)
if full_train["model_selection"] == "ensemble":
shell_sarimax_class = Shell_SARIMAX(filepath=full_train["filepath"],
train_set_name=full_train["csv_file_name"],
column_name="Net Cashflow from Operations",
start_date=full_train["training_start_date_sarimax"],
end_date=None, prediction_start_date=full_train["test_start_date"],
prediction_end_date=full_train["test_end_date"])
shell_sarimax_class.create_train_set()
shell_sarimax_class.seasonal_decomposition()
shell_sarimax_class.create_train_test_exog_endog()
if full_train["grid_search_arima"] == "on":
shell_sarimax_class.SARIMAX_gridsearch()
else:
shell_sarimax_class.best_params = list(full_train["sarimax_parameters"].values())
shell_sarimax_class.SARIMAX_train_test()
shell_sarimax_class_forecast_output = shell_sarimax_class.Sarimax_Forecast()
shell_lgbm_class = Shell_LGBM(filepath=full_train["filepath"], train_set_name=full_train["csv_file_name"],
column_name="Net Cashflow from Operations",
start_date=full_train["training_start_date_lightgbm"],
end_date=None,
prediction_start_date=full_train["test_start_date"],
prediction_end_date=full_train["test_end_date"],
param_set={'objective': ['regression'],
'boosting_type': ["goss"],
'num_leaves': [15, 31, 63, 127, 255],
'max_depth': [3, 5, 7, 15, 31],
'learning_rate': [0.1, 0.01, 0.001],
'subsample': [0.8, 0.6, 1.0],
'colsample_bytree': [0.8, 0.6, 1.0],
'reg_alpha': [0.0, 0.1, 0.5],
'reg_lambda': [0.0, 0.1, 0.5],
'n_estimators': [100, 200, 500],
'random_state': [42],
'num_iterations': [100, 200, 500]})
shell_lgbm_class.create_train_set()
shell_lgbm_class.create_train_test_exog_endog()
if full_train["grid_search_lightgbm"] == "on":
shell_lgbm_class.LGBM_GridSearch()
else:
param_set = {'objective': 'regression',
'boosting_type': "goss",
'num_leaves': full_train["lightgbm_parameters"]["num_leaves"],
'max_depth': full_train["lightgbm_parameters"]["max_depth"],
'learning_rate': full_train["lightgbm_parameters"]["learning_rate"],
'subsample': full_train["lightgbm_parameters"]["subsample"],
'colsample_bytree': full_train["lightgbm_parameters"]["colsample_bytree"],
'reg_alpha': full_train["lightgbm_parameters"]["reg_alpha"],
'reg_lambda': full_train["lightgbm_parameters"]["reg_lambda"],
'n_estimators': full_train["lightgbm_parameters"]["n_estimators"],
'random_state': full_train["lightgbm_parameters"]["random_state"],
'num_iterations': full_train["lightgbm_parameters"]["num_iterations"]}
shell_lgbm_class.best_params = param_set
shell_lgbm_class.Train_LightGBM()
shell_lgbm_class_forecast_output = shell_lgbm_class.Forecast_LightGBM()
sarimax_output = pd.DataFrame(columns=["Date", "Net Cashflow from Operations"])
lgbm_output = pd.DataFrame(columns=["Date", "Net Cashflow from Operations"])
sarimax_output["Date"] = shell_sarimax_class_forecast_output.index
sarimax_output["Net Cashflow from Operations"] = shell_sarimax_class_forecast_output.values
lgbm_output["Date"] = shell_lgbm_class_forecast_output.index
lgbm_output["Net Cashflow from Operations"] = shell_lgbm_class_forecast_output.values
shell_sarimax_class_forecast_output.to_csv(f"{shell_sarimax_class.filepath}/submission_sarimax.csv",
index=False)
shell_lgbm_class_forecast_output.to_csv(f"{shell_lgbm_class.filepath}/submission_lgbm.csv", index=False)
shell_ensemble_class = Shell_Ensemble(submission_SARIMAX=shell_sarimax_class_forecast_output,
submission_LGBM=shell_lgbm_class_forecast_output,
file_path=shell_sarimax_class.filepath,
file_name="submission_ensemble.csv")
shell_ensemble_class.Ensemble()
elif full_train["model_selection"] == "sarimax":
shell_sarimax_class = Shell_SARIMAX(filepath=full_train["filepath"],
train_set_name=full_train["csv_file_name"],
column_name="Net Cashflow from Operations",
start_date=full_train["training_start_date_sarimax"],
end_date=None, prediction_start_date=full_train["test_start_date"],
prediction_end_date=full_train["test_end_date"])
shell_sarimax_class.create_train_set()
shell_sarimax_class.seasonal_decomposition()
shell_sarimax_class.create_train_test_exog_endog()
if full_train["grid_search_arima"] == "on":
shell_sarimax_class.SARIMAX_gridsearch()
else:
shell_sarimax_class.best_params = list(full_train["sarimax_parameters"].values())
shell_sarimax_class.SARIMAX_train_test()
shell_sarimax_class_forecast_output = shell_sarimax_class.Sarimax_Forecast()
sarimax_output = pd.DataFrame(columns=["Date", "Net Cashflow from Operations"])
sarimax_output["Date"] = shell_sarimax_class_forecast_output.index
sarimax_output["Net Cashflow from Operations"] = shell_sarimax_class_forecast_output.values
sarimax_output.to_csv(f"{shell_sarimax_class.filepath}/submission_sarimax.csv",
index=False)
else:
shell_lgbm_class = Shell_LGBM(filepath=full_train["filepath"], train_set_name=full_train["csv_file_name"],
column_name="Net Cashflow from Operations",
start_date=full_train["training_start_date_lightgbm"],
end_date=None,
prediction_start_date=full_train["test_start_date"],
prediction_end_date=full_train["test_end_date"],
param_set={'objective': ['regression'],
'boosting_type': ["goss"],
'num_leaves': [15, 31, 63, 127, 255],
'max_depth': [3, 5, 7, 15, 31],
'learning_rate': [0.1, 0.01, 0.001],
'subsample': [0.8, 0.6, 1.0],
'colsample_bytree': [0.8, 0.6, 1.0],
'reg_alpha': [0.0, 0.1, 0.5],
'reg_lambda': [0.0, 0.1, 0.5],
'n_estimators': [100, 200, 500],
'random_state': [42],
'num_iterations': [100, 200, 500]})
shell_lgbm_class.create_train_set()
shell_lgbm_class.create_train_test_exog_endog()
if full_train["grid_search_lightgbm"] == "on":
shell_lgbm_class.LGBM_GridSearch()
else:
param_set = {'objective': 'regression',
'boosting_type': "goss",
'num_leaves': full_train["lightgbm_parameters"]["num_leaves"],
'max_depth': full_train["lightgbm_parameters"]["max_depth"],
'learning_rate': full_train["lightgbm_parameters"]["learning_rate"],
'subsample': full_train["lightgbm_parameters"]["subsample"],
'colsample_bytree': full_train["lightgbm_parameters"]["colsample_bytree"],
'reg_alpha': full_train["lightgbm_parameters"]["reg_alpha"],
'reg_lambda': full_train["lightgbm_parameters"]["reg_lambda"],
'n_estimators': full_train["lightgbm_parameters"]["n_estimators"],
'random_state': full_train["lightgbm_parameters"]["random_state"],
'num_iterations': full_train["lightgbm_parameters"]["num_iterations"]}
shell_lgbm_class.best_params = param_set
shell_lgbm_class_forecast_output = shell_lgbm_class.Forecast_LightGBM()
lgbm_output = pd.DataFrame(columns=["Date", "Net Cashflow from Operations"])
lgbm_output["Date"] = shell_lgbm_class_forecast_output.index
lgbm_output["Net Cashflow from Operations"] = shell_lgbm_class_forecast_output.values
lgbm_output.to_csv(f"{shell_lgbm_class.filepath}/submission_lgbm.csv", index=False)
output = output_buffer.getvalue()
console_output = output.splitlines()
is_training_complete = 1
with open(f"static/console_output.txt", "w") as f:
for item in console_output:
# write each item on a new line
f.write("%s\n" % item)
sys.stdout = sys.__stdout__
if full_train["model_selection"] == "ensemble":
file_output = "static/submission_ensemble.csv"
elif full_train["model_selection"] == "sarimax":
file_output = "static/submission_sarimax.csv"
else:
file_output = "static/submission_lgbm.csv"
response = {"console_output": "static/console_output.txt",
"is_training_complete": is_training_complete,
"csv_url": file_output}
with open('static/console_response.json', 'w') as fp:
json.dump(response, fp)
return render_template('Shell_Forecast_Finish.html', response=response)
if __name__ == '__main__':
app.run()