-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLab2.py
87 lines (76 loc) · 2.46 KB
/
Lab2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pandas as pd
#Question 1
def Euclidean_distance(v1,v2):
if len(v1)!=len(v2):
return ("vectors are not of the same dimension")
else:
sq=0.0
for i in range(0,len(v1)):
sq+=(v1[i]-v2[i])**2
euclidean_dist=sq**0.5
return euclidean_dist
def Manhattan_distance(v1,v2):
if len(v1)!=len(v2):
return ("vectors are not of the same dimension")
else:
msum=0.0
for i in range(0,len(v1)):
msum+=(v1[i]-v2[i])
man_dist=abs(msum)
return man_dist
#Question 2
def KNN(dt, k, test):
prediction = []
distances = []
for j in range(len(dt)):
vec = [dt[j][0], dt[j][1]]
d = Euclidean_distance(vec, test)
distances.append((d, dt[j][2]))
distances.sort(key=lambda x: x[0])
nearest_neighbors = distances[:k]
return nearest_neighbors
#Question 3
def label_encoding(inp):
category=set(inp) # Taking the common ones out
label={} # creating the dictionary to save the corresponding numeric value to the data
dt=[] # To store converted Numerical data
for i,c in enumerate(category):
label[c]=i #assigning the numerical value to the data
for i in inp:
dt.append(label[i])
return dt
#Question 4
def onehot_encode(inp,data):
onehot=[] #empty dict for one hot encoding
for i in inp:
if data== i:
onehot.append(1) #if entered data by user is equal to the data present, then it is given as 1 else, it is given as 0
else:
onehot.append(0)
return onehot
#Ans 1
v1=[float(x) for x in input("Enter vector1 : ").split()]
v2=[float(x) for x in input("Enter vector2 : ").split()]
euclidean=Euclidean_distance(v1,v2)
manhattan=Manhattan_distance(v1,v2)
print("Euclidean distance is :", euclidean)
print("Manhattan distance is: ", manhattan)
#Ans 3
inp=[str(x) for x in input("Enter the input data as categorical data : ").split()]
ans3=label_encoding(inp)
print("ANS 3: ")
print(ans3)
#Ans4
data=input("Enter the word to check:")
ans4=onehot_encode(inp,data)
print(ans4)
#Ans 2
d1=[110,150,175,195,95]
d2=[1000,2500,3500,2750,1100]
d3=[1,1,0,1,0]
dt=[d1,d2,d3] #dataset to find the nearest neighbours
k=int(input("Enter number of neighbour: "))
vector_data=input("Enter the vectors with space : ")
test = list(map(int, vector_data.split()))
KNN_classifier=KNN(dt,k,test)
print(KNN_classifier)