-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwindow.py
445 lines (358 loc) · 14.1 KB
/
window.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
from copy import deepcopy
import numpy as np
import pandas as pd
# import pandas_datareader as web
import datetime as dt
from interval import Interval
from collections import defaultdict
from itertools import permutations
from sklearn.preprocessing import MinMaxScaler, PolynomialFeatures
from sklearn.metrics import classification_report
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# hyper-params
max_features = 10000
batch_size = 64
learning_rate = 0.0001
n_epoch = 100
num_classes = 3 # three labels
window_size = 32
print_freq = 100
tolerance = 20
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
# pytorch dataset
class StockDataset(Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __len__(self):
assert len(self.data) == len(self.label), "data and label should be same size at 0"
return len(self.label)
@staticmethod
def to_tensor(data, label):
data = torch.from_numpy(data.reshape((-1, data.shape[-1]))).float()
label = torch.tensor(label)
return data, label
def __getitem__(self, index):
data = self.data[index, :, :]
label = self.label[index]
data, label = self.to_tensor(data, label)
sample = (data, label)
return sample
# lstm attention model
class LSTM_attn(nn.Module):
def __init__(self, in_f, out_f, hidden_size=512):
super(LSTM_attn, self).__init__()
self.hidden_size = hidden_size
self.LSTM = nn.LSTM(
input_size=in_f,
hidden_size=hidden_size,
num_layers=3,
batch_first=True
)
self.f1 = nn.Linear(512, 64)
self.f2 = nn.Linear(64, out_f)
self.r = nn.ReLU()
self.d = nn.Dropout(0.3)
def attn(self, lstm_output, h_t):
# lstm_output [bs, clips, hiden] h_t[bs, hiden]
h_t = h_t.unsqueeze(2)
attn_weights = torch.bmm(lstm_output, h_t) # lstm_output [bs, clips, hidden] ;h_t [bs, hidden, 1] --> attn [bs, clips, 1]
attn_weights = attn_weights.squeeze(2)
attention = F.softmax(attn_weights, dim = 0)
# bmm : [bs, hidden, clips] [bs, clips, 1]
attn_out = torch.bmm(lstm_output.transpose(1, 2), attention.unsqueeze(2)) # [bs, hidden, 1]
return attn_out.squeeze(2) # [bs, hidden]
def forward(self, x):
bs = x.size()[0]
window_size = x.size()[1]
# x = x.view(bs // self.window_size, self.window_size, -1)
self.LSTM.flatten_parameters()
x, (hn,hc) = self.LSTM(x) # x.shape -> bs,clip,512
x_last = x[:, -1, :] # x[:,-1,:].shape [bs, 512]
if int(x.size()[1]) != 1:
# attention
x = self.attn(x, x_last)
x = self.d(self.r(self.f1(x)))
x = self.f2(x) # [8, 128] --> [8, 2]
else:
# direct fc
x = self.d(self.r(self.f1(x_last.reshape(-1, self.hidden_size))))
x = self.f2(x)
return x.view(bs, -1) # expected output.shape --> [8, 2]
news = pd.read_csv('RedditNews.csv')
stock = pd.read_csv('stock.csv')
# Merge those rows with same Date time for news data
# Set Date as index
aggregation_functions = {'News': 'sum'}
news_new = news.groupby(news['Date']).aggregate(aggregation_functions)
# Set Date as index
stock.set_index('Date', inplace = True)
# Use "inner join" to merge news and stock data together
data = pd.concat([news_new, stock], axis=1, join = 'inner')
data.isnull().sum()
data.reset_index(inplace = True)
n = len(data)
train_data = data[data['Date'] < '20150101']
test_data = data[data['Date'] > '20141231']
print('train data:', len(train_data))
print('test data:', len(test_data))
ori_data = train_data['Close'].values.reshape(-1,1)
scaler = MinMaxScaler(feature_range=(0,1))
# scaler = PolynomialFeatures(degree=64, interaction_only=False, include_bias=False)
scaled_data = scaler.fit_transform(ori_data)
scaled_data.shape
ori_data_test = test_data['Close'].values.reshape(-1,1)
scaled_data_test = scaler.fit_transform(ori_data_test)
ori_data_all = data['Close'].values.reshape(-1,1)
scaled_data_all = scaler.fit_transform(ori_data_all)
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import copy
import re
# all news
headlines = list(data['News'])
# collect stopwords from nltk
stop = stopwords.words('english')
stop += ['``', ':', '?', '.', '&', ';', '-', 't', 's', ',', '$', '|', "''" , '--', 'b']
print("stop words: ", stop)
def clean_text(text):
'''
Make text lowercase, remove text in square brackets,remove links
and remove words containing numbers.
'''
text = str(text).lower()
text = re.sub('\[.*?\]', '', text)
text = re.sub('https?://\S+|www\.\S+', '', text)
text = re.sub('<.*?>+', '', text)
text = re.sub('\n', '', text)
text = re.sub('\w*\d\w*', '', text)
text = re.sub("b'*", '', text)
return text
def remove_stop(sentence):
'''
Utilzing word_tokenize to split words from a sentence and remove stop words.
'''
word_tokens = word_tokenize(sentence)
return [word for word in word_tokens if word not in stop]
head = copy.deepcopy(headlines)
headlines = []
for para in head:
para_re = clean_text(para) # clean data first
para_re = remove_stop(para_re) # remove stop
headlines.append(para_re)
# join all words to a long sentence
t_data = []
for head in headlines:
t_data.append(' '.join(d for d in head))
print('Before: ', data['News'][0])
print(" ")
print('After: ', t_data[0])
# feature engineering
from sklearn.feature_extraction.text import CountVectorizer
# 2-grams
countvector=CountVectorizer(ngram_range=(1,2), max_features=128)
# transform input to numpy format
t_data = np.array(t_data)
vec_news = countvector.fit_transform(t_data)
# train and test data split
vec_news_train = vec_news[data['Date'] < '20150101'].toarray()
vec_news_test = vec_news[data['Date'] > '20141231'].toarray()
# windowsize adjust
combin = [1,3,5,7,10,15,20,25,30]
combinations = list(permutations(combin, 2))
combinations.extend(list(zip(combin, combin))) # add diag element
print("Combination length:", len(combinations))
# cutoff setting
cutoff = Interval(-0.03, 0.03)
# metric dict define
metric_dict = defaultdict(tuple)
error_list = []
for index in range(len(combinations)):
try:
prediction_days, window_size = combinations[index]
# gen label for both train and test
ratio_list = []
for x in range(prediction_days, len(scaled_data_all)-window_size):
ratio = (ori_data_all[x + window_size, :] - ori_data_all[x, :]) / (ori_data_all[x, :] + 0.00001)
ratio_list.append(float(ratio))
temp_ratio = np.array(sorted(ratio_list)) # store the sorted ratio
# cutoff1 = np.percentile(temp_ratio, 33)
# cutoff2 = np.percentile(temp_ratio, 66)
cutoff = np.percentile(temp_ratio, 66) # choose the 66.7% quantile as cutoff
# print("cutoff1:", cutoff1)
# print("cutoff2:", cutoff2)
print("cutoff:", cutoff)
# new label
# y_train = [
# 0.
# if float(td) < cutoff1 else 2.
# if float(td) > cutoff2 else 1.
# for td in temp_ratio
# ]
# train label
ratio_list = []
for x in range(prediction_days, len(scaled_data)-window_size):
ratio = (ori_data[x + window_size, :] - ori_data[x, :]) / (ori_data[x, :] + 0.00001)
ratio_list.append(float(ratio))
temp_ratio = np.array(ratio_list) # store the sorted ratio
y_train = np.array([0. if float(td) < -cutoff else 2. if float(td) > cutoff else 1. for td in temp_ratio])
# print the distribution of three labels
print(f"Slow: {np.where(y_train==0.)[0].size}, Flat: {np.where(y_train==1.)[0].size}, Fast: {np.where(y_train==2.)[0].size}", )
# train data
x_train = []
for x in range(prediction_days, len(scaled_data)-window_size): ######
x_feat = np.concatenate((vec_news_train[x-prediction_days:x, :],
scaled_data[x-prediction_days:x, :]), 1)
x_train.append(x_feat)
# regression label
# y_train.append(scaled_data[x+window_size, :]) ###### predict window_size days after
# classification label
# data gen
x_train = np.array(x_train)
y_train = np.array(y_train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], -1))
# train data
train_dataset = StockDataset(data=x_train, label=y_train)
# train loader
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
drop_last=True,
)
# model
net = LSTM_attn(
in_f=x_train.shape[-1],
out_f=num_classes,
)
net = net.to(device)
# opt
optimizer = (
torch.optim.Adam(
filter(lambda p: p.requires_grad, net.parameters()),
lr = learning_rate,
betas=(0.9, 0.999))
)
# sche
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, MultiStepLR, StepLR
scheduler = (
CosineAnnealingWarmRestarts(
optimizer,
T_0=10,
T_mult=5,
eta_min=1e-6,
last_epoch=-1)
)
# train
total_loss, total_acc = 0., 0.
loss_list, acc_list = [], []
best_acc = 0.
net.train()
for epoch in range(n_epoch):
total_loss, total_acc = 0, 0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
# print('output: ',outputs)
# print('labels: ',labels)
# loss = F.mse_loss(outputs, labels.float())
loss = F.cross_entropy(outputs, labels.long())
pred_classes = torch.max(outputs, dim=1)[1]
correct = torch.eq(pred_classes, labels.to(device)).sum()
acc = (correct / len(labels))
total_acc += acc
loss.backward()
optimizer.step()
scheduler.step()
total_loss += loss.item()
loss_list.append(float(loss.detach().cpu().numpy()))
acc_list.append(float(acc))
if acc > best_acc:
best_model = deepcopy(net)
# data gen
actual_prices = test_data['Close'].values
total_dataset = pd.concat((train_data['Close'], test_data['Close']), axis=0)
model_inputs = total_dataset[len(total_dataset)-len(test_data)-prediction_days:].values.reshape(-1,1)
ori_model_inputs = deepcopy(model_inputs)
model_inputs = scaler.transform(model_inputs)
# test data
ratio_list = []
for x in range(prediction_days, len(scaled_data_test)-window_size):
ratio = (ori_data_test[x + window_size, :] - ori_data_test[x, :]) / (ori_data_test[x, :] + 0.00001)
ratio_list.append(float(ratio))
temp_ratio = np.array(ratio_list) # store the sorted ratio
y_test = [0. if float(td) < -cutoff else 2. if float(td) > cutoff else 1. for td in temp_ratio]
y_test = np.array(y_test)
# print the distribution of three labels
print(f"Slow: {np.where(y_test==0.)[0].size}, Flat: {np.where(y_test==1.)[0].size}, Fast: {np.where(y_test==2.)[0].size}", )
# test
x_test = []
for x in range(prediction_days, len(scaled_data_test)-window_size):
x_feat = np.concatenate((vec_news_test[x-prediction_days:x, :],
scaled_data_test[x-prediction_days:x, :]), 1)
x_test.append(x_feat)
# data gen
x_test = np.array(x_test)
y_test = np.array(y_test)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], -1))
# test data
test_dataset = StockDataset(data=x_test, label=y_test.reshape((-1)))
# test loader
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=1,
shuffle=False,
num_workers=0,
drop_last=True,
)
# inference
net.eval()
actual, pred = [], []
with torch.no_grad():
for i, (test_inputs, test_labels) in enumerate(test_loader):
test_inputs = test_inputs.to(device)
test_labels = test_labels.to(device)
test_outputs = best_model(test_inputs)
pred.extend(
torch.max(test_outputs, dim=1)[1]
.detach()
.cpu()
.numpy()
.flatten()
.tolist()
)
actual.extend(
test_labels
.detach()
.cpu()
.numpy()
.flatten()
.tolist()
)
y_true, y_pred = np.array(actual), np.array(pred)
# calculate metrics
acc_score = accuracy_score(y_true, y_pred)
print(f"combinations_{index}: acc: {acc_score}")
metric_dict[f'combinations_{index}'] = (y_true.tolist(), y_pred.tolist(), acc_score)
# print(classification_report(y_true, y_pred))
# print(accuracy_score(y_true, y_pred))
# confusion_matrix(y_true, y_pred)
# print(y_pred)
except Exception as e:
print(e)
error_list.append(index)