-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
208 lines (176 loc) · 8.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import logging
import os
import sys
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.backends import cudnn
from tqdm import tqdm
from utils.eval import eval_net
# from unet import UNet
from mobilenet.UNet_MobileNet import UNet
from torch.utils.tensorboard import SummaryWriter
from utils.dataset import BasicDataset
from torch.utils.data import DataLoader, random_split
# 输入图片和标签的路径
dir_img = 'data/liver/liver/train'
dir_mask = 'data/liver/liver/masks'
dir_checkpoint = 'data/liver/checkpoints'
def train_net(net,
device,
epochs=5,
batch_size=1,
lr=0.001,
val_percent=0.1,
save_cp=True,
img_scale=0.5):
dataset = BasicDataset(dir_img, dir_mask, img_scale)
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train, val = random_split(dataset, [n_train, n_val])
train_loader = DataLoader(
train, batch_size=batch_size, shuffle=True, num_workers=0)
val_loader = DataLoader(val, batch_size=batch_size,
shuffle=False, num_workers=0, drop_last=True)
writer = SummaryWriter(
comment=f'LR_{lr}_BS_{batch_size}_SCALE_{img_scale}')
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_cp}
Device: {device.type}
Images scaling: {img_scale}
''')
# 定义优化器
optimizer = optim.RMSprop(net.parameters(), lr=lr,
weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min' if net.num_classes > 1 else 'max', patience=2)
# 定义损失函数,类别大于1使用交叉熵,否则使用BCE
if net.num_classes > 1:
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCEWithLogitsLoss()
# 开始训练
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if net.num_classes == 1 else torch.long
true_masks = true_masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs)
loss = criterion(masks_pred, true_masks)
epoch_loss += loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
if global_step % (n_train // (10 * batch_size)) == 0:
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram(
'weights/' + tag, value.data.cpu().numpy(), global_step)
# writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), global_step)
val_score = eval_net(net, val_loader, device)
scheduler.step(val_score)
writer.add_scalar(
'learning_rate', optimizer.param_groups[0]['lr'], global_step)
if net.num_classes > 1:
logging.info(
'Validation cross entropy: {}'.format(val_score))
writer.add_scalar('Loss/test', val_score, global_step)
else:
logging.info(
'Validation Dice Coeff: {}'.format(val_score))
writer.add_scalar('Dice/test', val_score, global_step)
writer.add_images('images', imgs, global_step)
if net.num_classes == 1:
writer.add_images(
'masks/true', true_masks, global_step)
writer.add_images(
'masks/pred', torch.sigmoid(masks_pred) > 0.5, global_step)
# 保存模型
if save_cp and (not epoch%10):
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(net.state_dict(),
os.path.join(dir_checkpoint, f'MobileNet_UNet_epoch{epoch + 1}.pt'))
logging.info(f'Checkpoint {epoch + 1} saved !')
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=100,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.0001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default='',
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=0.5,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
format='%(levelname)s: %(message)s')
args = get_args()
# 判断是否使用GPU训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
# 导入网络模型,这里需要结合自己的数据集调整n_channels和num_classes:
# n_channels=3 for RGB images
# num_classes的设置原则如下:1. 对于1个类别和背景,num_classes=1; 2. 对于2个类别,num_classes=1; 类别数N大于2,num_classes=N
net = UNet(n_channels=3, num_classes=1)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.num_classes} output channels (classes)\n')
# 是否导入预训练权重进行迁移学习
if args.load:
model_dict = net.state_dict()
model_path = args.load
pretrained_dict = torch.load(model_path, map_location=device)
# 筛除不加载的层结构
pretrained_dict = {k: v for k,
v in pretrained_dict.items() if k in model_dict}
# 更新当前网络的结构字典
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
# faster convolutions, but more memory
cudnn.benchmark = True
try:
train_net(net=net,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pt')
logging.info('Saved interrupt')