This repository has been archived by the owner on Feb 8, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·217 lines (179 loc) · 8.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
'''
Train ncnet with strong loss
'''
import os
import numpy as np
import numpy.random
import datetime
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from lib.dataset_strong_loss import StrongLossDataset
from lib.loss import SparseStrongWeakLoss
from torch.utils.data import DataLoader
from lib.model_v2 import ImMatchNet
from torch.utils.tensorboard import SummaryWriter
from lib.tools import parseConfig
from lib.tools import ignorePath
import argparse
import sys
import shutil
# set visible gpu
# os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
use_cuda = torch.cuda.is_available()
torch.manual_seed(1)
if use_cuda:
torch.cuda.manual_seed(1)
np.random.seed(1)
# Argument parsing
parser = argparse.ArgumentParser(description='X Resolution Correspondence Network Training script')
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--training_file', type=str, default='../storage/MegaDepth_v1_SfM/training_pairs.txt')
parser.add_argument('--validation_file', type=str, default='../storage/MegaDepth_v1_SfM/validation_pairs.txt')
parser.add_argument('--image_path', type=str, default='../storage/MegaDepth_v1_SfM')
parser.add_argument('--result_model_fn', type=str, default='xrcnet', help='trained model filename')
parser.add_argument('--result_model_dir', type=str, default='trained_models', help='path to trained models folder')
parser.add_argument('--config', type=str, default='configs/xrcnet.json', help='path to config file')
parser.add_argument('--no_code_backup', help='Dont backup code', action='store_true')
parser.add_argument('--no_timestamp_folder', help='Dont save to timestamp folder', action='store_true')
parser.add_argument('--log', help='Log to FILE in result_model_dir; use - for stdout (default is log.txt)', metavar='FILE', default='log.txt')
args = parser.parse_args()
print(args)
cfg = parseConfig(args.config)
# directory responsible for keeping a copy of the training, including:
# - config file (hyperparams)
# - code to reproduce training
# - log file (iterations, loss report, etc)
if not args.no_timestamp_folder:
time_string = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
setting = "{}_backbone={}_gauKer={}_mode={}_loss={}_lr={}".format(os.path.basename(args.config)[:-5], cfg.backbone, cfg.gauss_size, cfg.loss["mode"], cfg.loss["loss"], cfg.optimizer["lr"])
root_folder = os.path.join(args.result_model_dir, '%s_%s_%s_%d' % (args.result_model_fn, setting, time_string, os.getpid()))
else:
root_folder = args.result_model_dir
if not os.path.exists(root_folder):
os.makedirs(root_folder)
# backup all the code for this training
if not args.no_code_backup:
code_folder = os.path.abspath(os.path.dirname(__file__))
shutil.copytree(code_folder, os.path.join(root_folder, os.path.basename(code_folder)), ignore=shutil.ignore_patterns("trained_models"))
# store the output to a log file
if args.log != '-':
sys.stdout = open(os.path.join(root_folder, args.log), 'w')
im_fe_ratio = cfg.im_fe_ratio
model = ImMatchNet(use_cuda=use_cuda, multi_gpu=cfg.training["multi_gpu"], ncons_kernel_sizes=cfg.NCNet["kernel_sizes"],
ncons_channels=cfg.NCNet["channels"], checkpoint=args.checkpoint, feature_extraction_cnn=cfg.backbone,
nc_learnable=cfg.NCNet["learned"])
if cfg.training["multi_gpu"]:
model = model.cuda()
model = nn.DataParallel(model)
# Set which parts of the model to train
if cfg.training["fe_finetune_params"]>0:
for i in range(cfg.training["fe_finetune_params"]):
for p in model.FeatureExtraction.model[-1][-(i+1)].parameters():
p.requires_grad=True
print('Trainable parameters:')
n = 0
for i,(name,p) in enumerate(filter(lambda p: p[1].requires_grad, model.named_parameters())):
print("[{}] {}: {}".format(i+1, name, p.shape))
n+=np.prod(p.shape)
print("Total params: {}".format(n))
if cfg.optimizer["type"].lower() == "adam":
print('Using Adam optimizer')
optimizer = optim.Adam(filter(lambda p:p.requires_grad, model.parameters()), lr=cfg.optimizer["lr"])
elif cfg.optimizer["type"].lower() == "sgd":
print('Using SGD optimizer')
optimizer = optim.SGD(filter(lambda p:p.requires_grad, model.parameters()), lr=cfg.optimizer["lr"], momentum=cfg.optimizer["momentum"])
if cfg.optimizer["use_scheduler"]:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.optimizer["scheduler_milestone"], gamma=0.5)
# Define checkpoint_name
ckpt_dir = os.path.join(root_folder, "ckpts")
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
checkpoint_name = os.path.join(ckpt_dir, datetime.datetime.now().strftime(
"%Y-%m-%d_%H_%M") + '_' + args.result_model_fn + '_%s_gauKer=%d_mode=%d' %
(cfg.backbone,cfg.gauss_size, cfg.loss["mode"]) +'.pth.tar')
# build transform
transformer = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((cfg.image_size, cfg.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
training_set = StrongLossDataset(file=args.training_file, image_path=args.image_path, transforms=transformer)
validation_set = StrongLossDataset(file=args.validation_file, image_path=args.image_path, transforms=transformer)
# build dataloader
training_loader = DataLoader(training_set, batch_size=cfg.training["batch_size"], num_workers=cfg.training["num_workers"], shuffle=True)
validation_loader = DataLoader(validation_set, batch_size=cfg.training["batch_size"], num_workers=cfg.training["num_workers"], shuffle=True)
args
if cfg.training["multi_gpu"]:
model.module.FeatureExtraction.eval()
else:
model.FeatureExtraction.eval()
# create Tensorboard writer
if cfg.training["use_writer"]:
writer = SummaryWriter(os.path.join(root_folder,'tensorboard/MegaDepth/' + datetime.datetime.now().strftime("%Y-%m-%d_%H_%M")+'_'+args.result_model_fn))
# create strongly supervised loss
loss_fn = SparseStrongWeakLoss ( image_size = cfg.image_size, model = model, loss_name = cfg.loss["loss"], backbone=cfg.backbone,
weight_orthogonal=cfg.loss["weight_orthogonal"], weight_loss = cfg.loss["weight_loss"], fine_coarse_ratio=cfg.fine_coarse_ratio,
im_fe_ratio = im_fe_ratio, gauss_size = cfg.gauss_size, mode = cfg.loss["mode"], N=cfg.numKey)
best = float("inf")
PCK_best = 0
for epoch in range(cfg.training["num_epochs"]):
epoch = epoch+1
running_loss = 0
for idx, batch in enumerate(training_loader):
batch['source_image'] = batch['source_image'].cuda()
batch['target_image'] = batch['target_image'].cuda()
batch['source_points'] = batch['source_points'].cuda()
batch['target_points'] = batch['target_points'].cuda()
batch['assignment'] = batch['assignment'].cuda()
optimizer.zero_grad()
loss, _, _, _, _ = loss_fn(batch)
loss.backward()
optimizer.step()
loss_item = loss.item()
print('epoch', epoch, 'batch', idx, 'batch training loss', loss_item, 'lr', optimizer.param_groups[0]['lr'])
running_loss += loss_item
if cfg.training["use_writer"]:
writer.add_scalar('training_loss', loss_item, (epoch-1) * len(training_loader) + idx)
sys.stdout.flush()
train_mean_loss = running_loss / len(training_loader)
with torch.no_grad():
running_PCK = 0
running_loss = 0
# model.eval()
for idx, batch in enumerate(validation_loader):
batch['source_image'] = batch['source_image'].cuda()
batch['target_image'] = batch['target_image'].cuda()
batch['source_points'] = batch['source_points'].cuda()
batch['target_points'] = batch['target_points'].cuda()
batch['assignment'] = batch['assignment'].cuda()
loss, _, _, _, _ = loss_fn(batch)
loss_item = loss.item()
running_loss += loss_item
val_mean_loss = running_loss / len(validation_loader)
is_best = val_mean_loss < best
if is_best:
best = val_mean_loss
print('validation_loss', val_mean_loss)
if cfg.training["use_writer"]:
writer.add_scalar('validation_loss', val_mean_loss, epoch-1)
if cfg.optimizer["use_scheduler"]:
scheduler.step()
dict = {
'epoch': epoch,
'state_dict': model.state_dict(),
'args': args,
'optimizer': optimizer.state_dict(),
'training_loss': train_mean_loss,
'validation_loss': val_mean_loss
}
dirname = os.path.dirname(checkpoint_name)
basename = os.path.basename(checkpoint_name)
print('is best?', is_best)
if is_best:
print('saving best model...')
torch.save(dict, os.path.join(dirname, 'best_'+basename))
sys.stdout.flush()