-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_app.py
42 lines (30 loc) · 1.08 KB
/
main_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#Library imports
import numpy as np
import streamlit as st
import cv2
from keras.models import load_model
#Loading the Model
model = load_model('dog_breed.h5')
#Name of Classes
CLASS_NAMES = ['Scottish Deerhound','Maltese Dog','Bernese Mountain Dog']
#Setting Title of App
st.title("Dog Breed Prediction")
st.markdown("Upload an image of the dog")
#Uploading the dog image
dog_image = st.file_uploader("Choose an image...", type="png")
submit = st.button('Predict')
#On predict button click
if submit:
if dog_image is not None:
# Convert the file to an opencv image.
file_bytes = np.asarray(bytearray(dog_image.read()), dtype=np.uint8)
opencv_image = cv2.imdecode(file_bytes, 1)
# Displaying the image
st.image(opencv_image, channels="BGR")
#Resizing the image
opencv_image = cv2.resize(opencv_image, (224,224))
#Convert image to 4 Dimension
opencv_image.shape = (1,224,224,3)
#Make Prediction
Y_pred = model.predict(opencv_image)
st.title(str("The Dog Breed is "+CLASS_NAMES[np.argmax(Y_pred)]))