diff --git a/.github/workflows/stale.yml b/.github/workflows/stale.yml index 75372c89..8aadbf6f 100644 --- a/.github/workflows/stale.yml +++ b/.github/workflows/stale.yml @@ -9,11 +9,12 @@ jobs: runs-on: ubuntu-latest steps: - - uses: actions/stale@v8 + - uses: actions/stale@v9 with: stale-issue-message: 'This issue had no activity for **14 days**. It will be closed in **1 week** unless there is some new activity. Is this issue already resolved?' stale-issue-label: 'stale' - exempt-issue-labels: bug, enhancement, new feature, new model, good first issue, keep + exempt-issue-labels: bug, enhancement, new feature, new algo, good first issue, keep + exempt-pr-labels: bug, enhancement, new feature, new algo, keep stale-pr-message: 'This pull request had no activity for **14 days**. It will be closed in **1 week** unless there is some new activity.' stale-pr-label: 'stale' days-before-stale: 14 diff --git a/README.md b/README.md index fcfda433..597c02cd 100644 --- a/README.md +++ b/README.md @@ -136,7 +136,7 @@ The paper references and links are all listed at the bottom of this file. | Neural Net | MICN🧑‍🔧[^27] | ✅ | | | | | `2023 - ICLR` | | Neural Net | DLinear🧑‍🔧[^17] | ✅ | | | | | `2023 - AAAI` | | Neural Net | TiDE🧑‍🔧[^28] | ✅ | | | | | `2023 - TMLR` | -| Neural Net | CSAI[^42] | ✅ | | | | | `2023 - arXiv` | +| Neural Net | CSAI[^42] | ✅ | | ✅ | | | `2023 - arXiv` | | Neural Net | SegRNN🧑‍🔧[^43] | ✅ | | | | | `2023 - arXiv` | | Neural Net | SCINet🧑‍🔧[^30] | ✅ | | | | | `2022 - NeurIPS` | | Neural Net | Nonstationary Tr.🧑‍🔧[^25] | ✅ | | | | | `2022 - NeurIPS` | diff --git a/README_zh.md b/README_zh.md index d85af8ba..dc64581c 100644 --- a/README_zh.md +++ b/README_zh.md @@ -121,7 +121,7 @@ PyPOTS当前支持多变量POTS数据的插补, 预测, 分类, 聚类以及异 | Neural Net | MICN🧑‍🔧[^27] | ✅ | | | | | `2023 - ICLR` | | Neural Net | DLinear🧑‍🔧[^17] | ✅ | | | | | `2023 - AAAI` | | Neural Net | TiDE🧑‍🔧[^28] | ✅ | | | | | `2023 - TMLR` | -| Neural Net | CSAI[^42] | ✅ | | | | | `2023 - arXiv` | +| Neural Net | CSAI[^42] | ✅ | | ✅ | | | `2023 - arXiv` | | Neural Net | SegRNN🧑‍🔧[^43] | ✅ | | | | | `2023 - arXiv` | | Neural Net | SCINet🧑‍🔧[^30] | ✅ | | | | | `2022 - NeurIPS` | | Neural Net | Nonstationary Tr.🧑‍🔧[^25] | ✅ | | | | | `2022 - NeurIPS` | diff --git a/docs/index.rst b/docs/index.rst index fd3b9219..76aee376 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -165,7 +165,7 @@ The paper references are all listed at the bottom of this readme file. +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ | Neural Net | TiDE🧑‍🔧 :cite:`das2023tide` | ✅ | | | | | ``2023 - TMLR`` | +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ -| Neural Net | CSAI :cite:`qian2023csai` | ✅ | | | | | ``2023 - arXiv`` | +| Neural Net | CSAI :cite:`qian2023csai` | ✅ | | ✅ | | | ``2023 - arXiv`` | +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ | Neural Net | SegRNN🧑‍🔧 :cite:`lin2023segrnn` | ✅ | | | | | ``2023 - arXiv`` | +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ diff --git a/docs/pypots.classification.rst b/docs/pypots.classification.rst index 48b887c9..91acec09 100644 --- a/docs/pypots.classification.rst +++ b/docs/pypots.classification.rst @@ -10,6 +10,15 @@ pypots.classification.brits :show-inheritance: :inherited-members: +pypots.classification.csai +---------------------------------- + +.. automodule:: pypots.classification.csai + :members: + :undoc-members: + :show-inheritance: + :inherited-members: + pypots.classification.grud --------------------------------- diff --git a/tests/imputation/segrnn.py b/tests/imputation/segrnn.py new file mode 100644 index 00000000..17b877ad --- /dev/null +++ b/tests/imputation/segrnn.py @@ -0,0 +1,117 @@ +""" +Test cases for SegRNN imputation model. +""" + +# Created by Wenjie Du +# License: BSD-3-Clause + + +import os.path +import unittest + +import numpy as np +import pytest + +from pypots.imputation import SegRNN +from pypots.optim import Adam +from pypots.utils.logging import logger +from pypots.utils.metrics import calc_mse +from tests.global_test_config import ( + DATA, + EPOCHS, + DEVICE, + TRAIN_SET, + VAL_SET, + TEST_SET, + GENERAL_H5_TRAIN_SET_PATH, + GENERAL_H5_VAL_SET_PATH, + GENERAL_H5_TEST_SET_PATH, + RESULT_SAVING_DIR_FOR_IMPUTATION, + check_tb_and_model_checkpoints_existence, +) + + +class TestSegRNN(unittest.TestCase): + logger.info("Running tests for an imputation model SegRNN...") + + # set the log and model saving path + saving_path = os.path.join(RESULT_SAVING_DIR_FOR_IMPUTATION, "SegRNN") + model_save_name = "saved_segrnn_model.pypots" + + # initialize an Adam optimizer + optimizer = Adam(lr=0.001, weight_decay=1e-5) + + # initialize a SegRNN model + segrnn = SegRNN( + DATA["n_steps"], + DATA["n_features"], + seg_len=4, + dropout=0, + epochs=EPOCHS, + saving_path=saving_path, + optimizer=optimizer, + device=DEVICE, + ) + + @pytest.mark.xdist_group(name="imputation-segrnn") + def test_0_fit(self): + self.segrnn.fit(TRAIN_SET, VAL_SET) + + @pytest.mark.xdist_group(name="imputation-segrnn") + def test_1_impute(self): + imputation_results = self.segrnn.predict(TEST_SET) + assert not np.isnan( + imputation_results["imputation"] + ).any(), "Output still has missing values after running impute()." + + test_MSE = calc_mse( + imputation_results["imputation"], + DATA["test_X_ori"], + DATA["test_X_indicating_mask"], + ) + logger.info(f"SegRNN test_MSE: {test_MSE}") + + @pytest.mark.xdist_group(name="imputation-segrnn") + def test_2_parameters(self): + assert hasattr(self.segrnn, "model") and self.segrnn.model is not None + + assert hasattr(self.segrnn, "optimizer") and self.segrnn.optimizer is not None + + assert hasattr(self.segrnn, "best_loss") + self.assertNotEqual(self.segrnn.best_loss, float("inf")) + + assert hasattr(self.segrnn, "best_model_dict") and self.segrnn.best_model_dict is not None + + @pytest.mark.xdist_group(name="imputation-segrnn") + def test_3_saving_path(self): + # whether the root saving dir exists, which should be created by save_log_into_tb_file + assert os.path.exists(self.saving_path), f"file {self.saving_path} does not exist" + + # check if the tensorboard file and model checkpoints exist + check_tb_and_model_checkpoints_existence(self.segrnn) + + # save the trained model into file, and check if the path exists + saved_model_path = os.path.join(self.saving_path, self.model_save_name) + self.segrnn.save(saved_model_path) + + # test loading the saved model, not necessary, but need to test + self.segrnn.load(saved_model_path) + + @pytest.mark.xdist_group(name="imputation-segrnn") + def test_4_lazy_loading(self): + self.segrnn.fit(GENERAL_H5_TRAIN_SET_PATH, GENERAL_H5_VAL_SET_PATH) + imputation_results = self.segrnn.predict(GENERAL_H5_TEST_SET_PATH) + assert not np.isnan( + imputation_results["imputation"] + ).any(), "Output still has missing values after running impute()." + + test_MSE = calc_mse( + imputation_results["imputation"], + DATA["test_X_ori"], + DATA["test_X_indicating_mask"], + ) + logger.info(f"Lazy-loading SegRNN test_MSE: {test_MSE}") + + +if __name__ == "__main__": + unittest.main()