forked from WPIRoboticsEngineering/RBE2002_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDrivingChassis.cpp
518 lines (468 loc) · 18.3 KB
/
DrivingChassis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
* DrivingChassis.cpp
*
* Created on: Jan 31, 2019
* Author: hephaestus
*/
#include "DrivingChassis.h"
/**
* Compute a delta in wheel angle to traverse a specific distance
*
* arc length = 2* Pi* R* (C/360)
*
* C is the central angle of the arc in degrees
* R is the radius of the arc
* Pi is Pi
*
* @param distance a distance for this wheel to travel in MM
* @return the wheel angle delta in degrees
*/
float DrivingChassis::distanceToWheelAngle(float distance) {
return 0;
}
/**
* Compute the arch length distance the wheel needs to travel through to rotate the base
* through a given number of degrees.
*
* arc length = 2* Pi* R* (C/360)
*
* C is the central angle of the arc in degrees
* R is the radius of the arc
* Pi is Pi
*
* @param angle is the angle the base should be rotated by
* @return is the linear distance the wheel needs to travel given the this CHassis's wheel track
*/
float DrivingChassis::chassisRotationToWheelDistance(float angle) {
return 0;
}
DrivingChassis::~DrivingChassis() {
// do nothing
}
/**
* DrivingChassis encapsulates a 2 wheel differential steered chassis that drives around
*
* @param left the left motor
* @param right the right motor
* @param wheelTrackMM is the measurment in milimeters of the distance from the left wheel contact point to the right wheels contact point
* @param wheelRadiusMM is the measurment in milimeters of the radius of the wheels
* @param imu The object that is used to access the IMU data
*
*/
DrivingChassis::DrivingChassis(PIDMotor * left, PIDMotor * right,
float wheelTrackMM, float wheelRadiusMM,GetIMU * imu) {
myleft = left;
myright = right;
mywheelTrackMM = wheelTrackMM;
mywheelRadiusMM = wheelRadiusMM;
IMU = imu;
}
/**
* Start a drive forward action
*
* @param mmDistanceFromCurrent is the distance the mobile base should drive forward
* @param msDuration is the time in miliseconds that the drive action should take
*
* @note this function is fast-return and should not block
* @note pidmotorInstance->overrideCurrentPosition(0); can be used to "zero out" the motor to
* allow for relative moves. Otherwise the motor is always in ABSOLUTE mode
*/
void DrivingChassis::driveForwardFromInterpolation(float mmDistanceFromCurrent, int msDuration) {
// We should also have a "drive straight" method that uses the IMU to actually drive straight
// Although we'll have a linefollow state so... idk maybe not
myleft -> overrideCurrentPosition(0);
myright -> overrideCurrentPosition(0);
myleft -> startInterpolationDegrees(mmDistanceFromCurrent * MM_TO_WHEEL_DEGREES, msDuration, LIN);
myright -> startInterpolationDegrees(-mmDistanceFromCurrent * MM_TO_WHEEL_DEGREES, msDuration, LIN);
}
void DrivingChassis::driveForward(float mmDistanceFromCurrent, int msDuration){
// if we're not performing an action
// start a timer, reset encoders
startTimeOfMovement_ms = millis();
myleft -> overrideCurrentPosition(0);
myright -> overrideCurrentPosition(0);
motionSetpoint = mmDistanceFromCurrent;
timeout_ms = msDuration;
motionType = DRIVING_FORWARDS;
}
/**
* Start a drive backwards action
*
* @param mmDistanceFromCurrent is the distance the mobile base should drive backwards
* @param msDuration is the time in miliseconds that the drive action should take
*
* @note this function is fast-return and should not block
*/
void DrivingChassis::driveBackwardsFromInterpolation(float mmDistanceFromCurrent, int msDuration) {
// We should also have a "drive straight" method that uses the IMU to actually drive straight
// Although we'll have a linefollow state so... idk maybe not
myleft -> overrideCurrentPosition(0);
myright -> overrideCurrentPosition(0);
myleft -> startInterpolationDegrees(-mmDistanceFromCurrent * MM_TO_WHEEL_DEGREES, msDuration, LIN);
myright -> startInterpolationDegrees(mmDistanceFromCurrent * MM_TO_WHEEL_DEGREES, msDuration, LIN);
}
/**
* Start a drive backward action
*
* @param mmDistanceFromCurrent is the distance the mobile base should drive backward
* @param msDuration is the time in miliseconds that the drive action should take
*
* @note this function is fast-return and should not block
* @note pidmotorInstance->overrideCurrentPosition(0); can be used to "zero out" the motor to
* allow for relative moves. Otherwise the motor is always in ABSOLUTE mode
*/
void DrivingChassis::driveBackwards(float mmDistanceFromCurrent, int msDuration){
// if we're not performing an action
// start a timer, reset encoders
startTimeOfMovement_ms = millis();
myleft -> overrideCurrentPosition(0);
myright -> overrideCurrentPosition(0);
motionSetpoint = mmDistanceFromCurrent;
timeout_ms = msDuration;
motionType = DRIVING_BACKWARDS;
}
/**
* Start a turn action
*
* This action rotates the robot around the center line made up by the contact points of the left and right wheels.
* Positive angles should rotate to the left
*
* This rotation is a positive rotation about the Z axis of the robot.
*
* @param degreesToRotateBase the number of degrees to rotate
* @param msDuration is the time in miliseconds that the drive action should take
*
* @note this function is fast-return and should not block
* @note pidmotorInstance->overrideCurrentPosition(0); can be used to "zero out" the motor to
* allow for relative moves. Otherwise the motor is always in ABSOLUTE mode
*/
void DrivingChassis::turnDegreesFromInterpolation(float degreesToRotateBase, int msDuration) {
myleft -> overrideCurrentPosition(0);
myright -> overrideCurrentPosition(0);
myleft -> startInterpolationDegrees(degreesToRotateBase * WHEEL_DEGREES_TO_BODY_DEGREES, msDuration, LIN);
myright -> startInterpolationDegrees(degreesToRotateBase * WHEEL_DEGREES_TO_BODY_DEGREES, msDuration, LIN);
}
void DrivingChassis::turnToHeading(float degreesToRotateBase, int msDuration){
motionSetpoint = degreesToRotateBase;
timeout_ms = msDuration;
startTimeOfMovement_ms = millis();
motionType = TURNING;
}
/**
* Check to see if the chassis is performing an action
*
* @return drivingStatus depending on where we are in the motion
*
* @note this function is fast-return and should not block
*/
DrivingStatus DrivingChassis::statusOfChassisDriving() {
//int currentOrientation = myChassisPose.getOrientationToClosest90();
switch(motionType){
case TURNING:{
static float accum = 0;
static float lastHeadingError = 0;
// check for timeout
if((millis() - startTimeOfMovement_ms) > timeout_ms){
//timeout occured. Stop the robot
Serial.println("Detected Timeout on Turn\r\n");
//Serial.println("CURRENT HEADING: " + String(myChassisPose.currentHeading));
stop();
adjustedHeading = false;
return TIMED_OUT;
}
float currentHeading = myChassisPose.initialHeading - IMU->getWrappedAzimuth();
float headingError = motionSetpoint - currentHeading;
// we don't want to to make long turns
if(fabs(headingError) > 180){
if(headingError > 180){
headingError -= 360;
}
else{
headingError += 360;
}
}
// Integral term
accum += headingError;
if(accum > 100){
accum = 100;
}
// derivative term
float deltaChange = lastHeadingError - headingError;
lastHeadingError = headingError;
float motorEffort = (turningMovementKp) * headingError + accum*turningMovementKi + deltaChange*turningMovementKd;
//myChassisPose.heading = -currentHeading; // - to account for what is considered a "positive" rotation
myChassisPose.currentHeading = currentHeading;
if(fabs(headingError) <= wheelMovementDeadband_deg)
{
//Serial.println("Reached Setpoint\r\n");
stop();
adjustedHeading = false;
accum = 0;
return REACHED_SETPOINT;
}
else{
if(fabs(motorEffort) > MAX_MOTOR_EFFORT_DURING_TURN)
{
if(motorEffort < 0){
motorEffort = -MAX_MOTOR_EFFORT_DURING_TURN;
}
else if(motorEffort > 0){
motorEffort = MAX_MOTOR_EFFORT_DURING_TURN;
}
}
myleft->setVelocityDegreesPerSecond(motorEffort);
myright->setVelocityDegreesPerSecond(motorEffort);
}
}
break;
case DRIVING_FORWARDS:{
// check for timeout
if((millis() - startTimeOfMovement_ms) > timeout_ms){
//timeout occured. Stop the robot
Serial.println("Detected Timeout on Forwards\r\n");
stop();
return TIMED_OUT;
}
if(motionSetpoint != -1){
float currentDistanceMovedRightWheel_mm = (myright -> getAngleDegrees())*WHEEL_DEGREES_TO_MM;
float rightWheelError_mm = currentDistanceMovedRightWheel_mm - motionSetpoint;
driveStraight(myChassisPose.currentHeading, DRIVING_FORWARDS);
//driveStraight(currentOrientation, DRIVING_FORWARDS);
if((fabs(rightWheelError_mm) < wheelMovementDeadband_mm)){
//Serial.println("Reached Setpoint \r\n");
stop();
return REACHED_SETPOINT;
}
}
else{
// sets speed to 20 cm per second
driveStraight(myChassisPose.currentHeading, DRIVING_FORWARDS);
}
}
break;
case DRIVING_BACKWARDS:{
// check for timeout
if((millis() - startTimeOfMovement_ms) > timeout_ms){
//timeout occured. Stop the robot
Serial.println("Detected Timeout on Backwards\r\n");
stop();
return TIMED_OUT;
}
if(motionSetpoint != -1){
float currentDistanceMovedRightWheel_mm = (myright -> getAngleDegrees())*WHEEL_DEGREES_TO_MM;
float rightWheelError_mm = - currentDistanceMovedRightWheel_mm - motionSetpoint;
driveStraight(myChassisPose.currentHeading, DRIVING_BACKWARDS);
//driveStraight(currentOrientation, DRIVING_BACKWARDS);
if((fabs(rightWheelError_mm) < wheelMovementDeadband_mm)){
//Serial.println("Reached Setpoint \r\n");
stop();
return REACHED_SETPOINT;
}
}
else{
// sets speed to 20 cm per second
driveStraight(myChassisPose.currentHeading, DRIVING_BACKWARDS);
}
}
break;
default:
break;
}
return GOING_TO_SETPOINT;
}
/**
* stop the robot
*/
void DrivingChassis::stop(){
myleft -> stop();
myright -> stop();
}
/**
* drive straight, forward or backward
*
* @param targetHeading heading to maintain in degrees
* @param direction is the direction we are moving, forward or backward
*
* @note this function is fast-return and should not block
* @note pidmotorInstance->overrideCurrentPosition(0); can be used to "zero out" the motor to
* allow for relative moves. Otherwise the motor is always in ABSOLUTE mode
*/
void DrivingChassis::driveStraight(float targetHeading, MotionType direction){
float currentHeading = myChassisPose.initialHeading - IMU->getWrappedAzimuth();
float headingError = targetHeading - currentHeading;
if(fabs(headingError) > 180){
if(headingError > 180){
headingError -= 360;
}
else{
headingError += 360;
}
}
float motorEffort = (turningMovementKp) * .75 * headingError;
if(direction == DRIVING_BACKWARDS){
myleft->setVelocityDegreesPerSecond((MAX_SPEED_MM_PER_SEC + motorEffort)*MM_TO_WHEEL_DEGREES);
myright->setVelocityDegreesPerSecond((-MAX_SPEED_MM_PER_SEC + motorEffort)*MM_TO_WHEEL_DEGREES);
}
else if(direction == DRIVING_FORWARDS){
myright->setVelocityDegreesPerSecond((MAX_SPEED_MM_PER_SEC + motorEffort)*MM_TO_WHEEL_DEGREES);
myleft->setVelocityDegreesPerSecond((-MAX_SPEED_MM_PER_SEC + motorEffort)*MM_TO_WHEEL_DEGREES);
}
}
/**
* line follow in the backwards direction, if the line follower is mounted to the back of the robot
*/
//void DrivingChassis::lineFollowBackwards(){
// int leftSensorValue = analogRead(LEFT_LINE_SENSOR);
// int rightSensorValue = analogRead(RIGHT_LINE_SENSOR);
// float leftCorrection = 0;
// float rightCorrection = 0;
// if(leftSensorValue >= lineSensor.ON_BLACK && rightSensorValue>= lineSensor.ON_BLACK)
// {
// if(lineSensor.canCountLine){
// lineSensor.lineCount++;
// // Mathematically speaking, this should only increment one of the following. Either
// // row or column. Since there are two markers for each row, we need to only count once every two markers.
// int ordinalDirection_degrees = myChassisPose.getOrientationToClosest90();
//
// // we need to count rows
// if((ordinalDirection_degrees == 180) || (ordinalDirection_degrees == 0)){
// myChassisPose.rowCount += 1;
// if(myChassisPose.rowCount == 2){
// if(ordinalDirection_degrees == 180)
// myChassisPose.currentRow -= 1;
// else
// myChassisPose.currentRow += 1;
// myChassisPose.rowCount = 0;
// }
// }
//
// // we need to count columns
// else if((ordinalDirection_degrees == 90) || (ordinalDirection_degrees == -90)){
// myChassisPose.currentColumn += ordinalDirection_degrees/90;
// }
//
// lineSensor.canCountLine = false; // This is meant as a line "debouncing". We don't want to catch the same line twice.
// }
// //Serial.println("Line Count: " + String(lineCount));
// }
//
//
// else if(leftSensorValue >= lineSensor.ON_BLACK || rightSensorValue >= lineSensor.ON_BLACK){
// rightCorrection = (lineSensor.ON_BLACK - rightSensorValue)*lineSensor.lineFollowingKpForwards;
// leftCorrection = (leftSensorValue - lineSensor.ON_BLACK)*lineSensor.lineFollowingKpForwards;
// lineSensor.canCountLine = true;
// }
// else{
// lineSensor.canCountLine = true;
// }
// myleft -> setVelocityDegreesPerSecond(lineSensor.lineFollowingSpeedBackwards_mm_per_sec*MM_TO_WHEEL_DEGREES + leftCorrection);
// myright -> setVelocityDegreesPerSecond(-lineSensor.lineFollowingSpeedForwards_mm_per_sec*MM_TO_WHEEL_DEGREES + rightCorrection);
//}
/**
* line follow in the forwards direction, if the line follower is mounted to the front of the robot
*/
void DrivingChassis::lineFollowForwards(){
// These sensors are for driving on the line
int leftSensorValue = analogRead(LEFT_LINE_SENSOR);
int rightSensorValue = analogRead(RIGHT_LINE_SENSOR);
static int settlingCount = 0;
// these sensors are for detecting a line on the center of rotation
int lineDetectLeft = analogRead(LEFT_LINE_DETECT);
float lineDetectRight = analogRead(RIGHT_LINE_DETECT);
float leftCorrection = 0;
float rightCorrection = 0;
if(lineDetectLeft >= lineSensor.ON_BLACK_DETECT && lineDetectRight >= lineSensor.ON_BLACK_DETECT)
{
//Serial.println("Settling Count: " + String(settlingCount));
//Serial.println("ON BLACK");
if(lineSensor.canCountLine){
lineSensor.lineCount++;
// Mathematically speaking, this should only increment one of the following. Either
// row or column. Since there are two markers for each row, we need to only count once every two markers.
int ordinalDirection_degrees = myChassisPose.getOrientationToClosest90();
// we need to count rows
if((ordinalDirection_degrees == 180) || (ordinalDirection_degrees == 0)){
if(ordinalDirection_degrees == 180)
myChassisPose.currentRow -= 1;
else
myChassisPose.currentRow += 1;
}
// we need to count columns
else if((ordinalDirection_degrees == 90) || (ordinalDirection_degrees == -90)){
myChassisPose.currentColumn += ordinalDirection_degrees/90;
}
lineSensor.canCountLine = false; // This is meant as a line "debouncing". We don't want to catch the same line twice.
}
settlingCount = 0;
}
else if(lineDetectLeft < lineSensor.ON_BLACK_DETECT && lineDetectRight <= lineSensor.ON_BLACK_DETECT){
settlingCount++;
if(settlingCount > lineSensor.lineDebouncing){
settlingCount = 0;
//Serial.println("NOT ON BLACK");
lineSensor.canCountLine = true;
}
}
// both, not either
if((rightSensorValue >= lineSensor.ON_BLACK_FOLLOW) && (leftSensorValue >= lineSensor.ON_BLACK_FOLLOW))
{
myleft -> setVelocityDegreesPerSecond(-lineSensor.lineFollowingSpeedForwards_mm_per_sec*MM_TO_WHEEL_DEGREES);
myright -> setVelocityDegreesPerSecond(lineSensor.lineFollowingSpeedForwards_mm_per_sec*MM_TO_WHEEL_DEGREES);
return;
}
rightCorrection = (lineSensor.ON_WHITE_FOLLOW - rightSensorValue)*lineSensor.lineFollowingKpForwards;
leftCorrection = (leftSensorValue - lineSensor.ON_WHITE_FOLLOW)*lineSensor.lineFollowingKpForwards;
myleft -> setVelocityDegreesPerSecond((-lineSensor.lineFollowingSpeedForwards_mm_per_sec*MM_TO_WHEEL_DEGREES + leftCorrection));
myright -> setVelocityDegreesPerSecond((lineSensor.lineFollowingSpeedForwards_mm_per_sec*MM_TO_WHEEL_DEGREES + rightCorrection));
}
void DrivingChassis::lineFollowForwards(int speed){
// These sensors are for driving on the line
int leftSensorValue = analogRead(LEFT_LINE_SENSOR);
int rightSensorValue = analogRead(RIGHT_LINE_SENSOR);
static int settlingCount = 0;
float leftCorrection = 0;
float rightCorrection = 0;
if((rightSensorValue >= lineSensor.ON_GREY_FOLLOW) && (leftSensorValue >= lineSensor.ON_GREY_FOLLOW))
{
return;
}
rightCorrection = (lineSensor.ON_WHITE_FOLLOW - rightSensorValue)*lineSensor.lineFollowingKpForwards;
leftCorrection = (leftSensorValue - lineSensor.ON_WHITE_FOLLOW)*lineSensor.lineFollowingKpForwards;
myleft -> setVelocityDegreesPerSecond((-speed*MM_TO_WHEEL_DEGREES + leftCorrection));
myright -> setVelocityDegreesPerSecond((speed*MM_TO_WHEEL_DEGREES + rightCorrection));
}
bool DrivingChassis::isCenteredOnLine(){
static int settlingCount = 0;
int targetValue = (lineSensor.ON_GREY_FOLLOW - 400);
int tolerance = 450;
int leftSensorValue = analogRead(LEFT_LINE_SENSOR);
int rightSensorValue = analogRead(RIGHT_LINE_SENSOR);
float rightCorrection = (targetValue - rightSensorValue)*lineSensor.lineFollowingKpForwards;
float leftCorrection = (leftSensorValue - targetValue)*lineSensor.lineFollowingKpForwards;
int rightError = fabs(rightSensorValue - targetValue);
int leftError = fabs(leftSensorValue - targetValue);
if(rightError <= tolerance && leftError <= tolerance){
settlingCount++;
}
else{
settlingCount = 0;
}
if(settlingCount > 100){
Serial.println("CENTERED");
stop();
return true;
}
myleft -> setVelocityDegreesPerSecond(leftCorrection);
myright -> setVelocityDegreesPerSecond(rightCorrection);
return false;
}
/**
*
* loop()
*
* a fast loop function that will update states of the motors based on the information from the
* imu.
*/
bool DrivingChassis::loop(){
return false;
}