forked from alexrosenfeld10/rt-kernel-test-analytics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_reduction.py
629 lines (573 loc) · 23.6 KB
/
data_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
'''
data_reduction.py
Procedure
1. Cleans the log file created by bash script ftrace and strace
2. Creates a dataframe with the column names and datatypes specific to log type
3. Create output csv file based on the input filename
example: python data_reduction.py -i rt/logfile -s pi_stress -o rt/python-output/
example: python data_reduction.py -i non-rt/logfile -s pi_stress -o non-rt/python-output/
'''
import argparse
import pandas as pd
import os
import errno, sys
import glob
'''
Parser - comamnd line parser
@input: void
@output: String input_folder - name of folder containing log files
@output: String[] search_pid - names of process ids to filter in
@output: String output_folder - name of folder containing output files
'''
def Parser():
# set up cli
parser = argparse.ArgumentParser()
parser.add_argument("-i", action='store', dest='input_folder',
help="Input folder name")
parser.add_argument("-s", action='store', dest='search_pid',
nargs='+', help="Search task-pid name")
parser.add_argument("-o", action='store', dest='output_folder',
help="Output created csv to folder")
# store user input
args = parser.parse_args()
# error handle and store values
if args.input_folder == None:
sys.exit(errno.EACCES)
else:
input_folder = args.input_folder
if args.search_pid == None:
sys.exit(errno.EACCES)
else:
search_pid = args.search_pid
if args.output_folder == None:
sys.exit(errno.EACCES)
else:
output_folder = args.output_folder
# return output values
return input_folder, search_pid, output_folder
'''
PathFinder - determine the output folder
@input: String input_filename - input filename
@input: String output_folder - output folder name
@output: String output_filename - output filename
@output: String output_path - file path to create output file
'''
def PathFinder(input_filename, output_folder):
fileDir = os.path.dirname(os.path.realpath('__file__'))
input_filename = input_filename.split('/')[-1]
output_filename = input_filename[:-4] + ".csv"
# determine output_path
output_path = fileDir + "/" + output_folder + "/" + output_filename
return output_filename, output_path
'''
FtraceFunction - read log file, filter process id, and create dataframe
@input: String filename - name of log file
@input: String[] search_pid - list of process ids to filter in
@output: DataFrame df - created dataframe
'''
def FtraceFunction(filename, search_pid):
# column names for data frame
header = ['task-pid',
'cpu#',
'irqs-off',
'need-resched',
'need-resched_lazy',
'hardirq-softirq',
'preempt-depth',
'timestamp',
'child-process',
'parent-process']
# column values for data frame
task_pid = []
cpu_num = []
irq_off = []
need_resched = []
need_resched_lazy = []
hardirq_softirq = []
preempt_depth = []
timestamp = []
child_process = []
parent_process = []
with open(filename) as fp:
for line_num, l in enumerate(fp):
if line_num >= 13:
line = l.split()
# cleaning ftrace line to store in proper column
for c, val in enumerate(line):
# storing task_pid col
if c == 0:
if val[:9] not in search_pid:
break
task_pid.append(val)
# storing cpu# col
elif c == 1:
str_len = len(val)
temp_str = ''
for i in range(0, str_len):
if val[i] != '[' and val[i] != ']':
temp_str += val[i]
cpu_num.append(temp_str)
# storing irq_off, need_resched, need_resched_lazy,
# hardirq_softirq, and preempt_depth cols
elif c == 2:
str_len = len(val)
for i in range (0, str_len):
curr_char = ''
if val[i] == '.':
curr_char = 'null'
else:
curr_char = val[i]
if i == 0:
irq_off.append(curr_char)
elif i == 1:
need_resched.append(curr_char)
elif i == 2:
need_resched_lazy.append(curr_char)
elif i == 3:
hardirq_softirq.append(curr_char)
elif i == 4:
preempt_depth.append(curr_char)
# storing timestamp col
elif c == 3:
str_len = len(val)
temp_str = ''
for i in range(0, str_len):
if val[i] != ':':
temp_str += val[i]
timestamp_val = float(temp_str)
timestamp.append(timestamp_val)
# storing child_process col
elif c == 4:
child_process.append(val)
# storing parent_process col
elif c == 5:
val = val.rstrip()
str_len = len(val)
temp_str = ''
for i in range(0, str_len):
if val[i] != '<' and val [i] != '-':
temp_str += val[i]
parent_process.append(temp_str)
# end for loop
# end for loop
fp.close()
#end of fp
if (len(task_pid) == len(cpu_num) == len(irq_off) ==
len(need_resched) == len(need_resched_lazy) ==
len(hardirq_softirq) == len(preempt_depth) ==
len(timestamp) == len(child_process) == len(parent_process)):
# create data frame
df = pd.DataFrame({ header[0]: task_pid,
header[1]: cpu_num,
header[2]: irq_off,
header[3]: need_resched,
header[4]: need_resched_lazy,
header[5]: hardirq_softirq,
header[6]: preempt_depth,
header[7]: timestamp,
header[8]: child_process,
header[9]: parent_process })
return df
else:
print("error")
sys.exit(0)
'''
StraceTable - read log file, filter process id, and create dataframe
@input: String filename - name of log file
@output: DataFrame df - created dataframe
'''
def StraceTable(filename):
# column names for data frame
header = ["time",
"seconds",
"usecs/call",
"calls",
"errors",
"syscall"]
# column values for data frame
time = []
seconds = []
usecs_call = []
calls = []
errors = []
syscall = []
with open(filename) as fp:
# cleaning strace line to store in proper column
for line_num, l in enumerate(fp):
# skip headers in file
if line_num >= 2:
line = l.split()
# line with end of data
if line[0] == "------":
break
# line without error value
if len(line) == 5:
for i, val in enumerate(line):
if i == 0:
time.append(val)
elif i == 1:
seconds.append(val)
elif i == 2:
usecs_call.append(val)
elif i == 3:
calls.append(val)
elif i == 4:
errors.append(0)
syscall.append(val)
# line with error value
if len(line) == 6:
for i, val in enumerate(line):
if i == 0:
time.append(val)
elif i == 1:
seconds.append(val)
elif i == 2:
usecs_call.append(val)
elif i == 3:
calls.append(val)
elif i == 4:
errors.append(val)
elif i == 5:
syscall.append(val)
# end of for loop
fp.close()
# end of fp
# create data frame
if (len(time) == len(seconds) == len(usecs_call) == len(calls) == len(errors) == len(syscall)):
df = pd.DataFrame({ header[0]: time,
header[1]: seconds,
header[2]: usecs_call,
header[3]: calls,
header[4]: errors,
header[5]: syscall })
return df
else:
print("error")
sys.exit(0)
'''
StraceTimestamp - read log file, filter process id, and create dataframe
TODO: fix timestampe pid issue in strace bash script
@input: String filename - name of log file
@output: DataFrame df - created dataframe
'''
def StraceTimestamp(filename):
pid = []
process_time = []
process_name = []
parameter = []
header = ["process_time",
"process_name",
"parameter"]
with open(filename) as fp:
for line_num, l in enumerate(fp):
line = l.split()
col = 0
temp_parameter = ""
if len(line) == 4:
for i, val in enumerate(line):
if col == 0:
process_time.append(val)
col += 1
elif col == 1:
if temp_parameter == "<...futex":
process_name.append("futex")
parameter.append("resumed")
col += 3
if temp_parameter == "<...clock_nanosleep":
process_name.append("clock_nanosleep")
parameter.append("resumed")
col += 3
for index, c in enumerate(val):
if c != '(' and c != ')':
temp_parameter += c
if c == '(':
process_name.append(val[:index])
temp_parameter = temp_parameter[index:]
col += 1
if c == ')':
col += 1
# end of for loop
elif col == 2:
if i == len(line) - 1:
temp_parameter += val + " "
parameter.append(temp_parameter)
else:
for index, c in enumerate(val):
if c == ')':
val = val[:-1]
col += 1
temp_parameter += val + " "
elif col == 3:
parameter.append(temp_parameter)
col += 1
# end of for loop
# end of for loop
fp.close()
# end of fp
# create data frame
if len(process_time) == len(process_name) == len(parameter):
df = pd.DataFrame({ header[0]: process_time,
header[1]: process_name,
header[2]: parameter })
return df
else:
print("error")
sys.exit(0)
'''
PerfLatency - read log file and create csv
@input: String filename - name of log file
@output: DataFrame df - created dataframe
'''
def PerfLatency(filename):
task = []
runtime_ms = []
switches = []
average_delay = []
max_ms = []
max_at = []
header = ['Task', 'Runtime ms', 'Switches', 'Average delay ms',
'Maximum delay ms', 'Maximum delay at']
with open(filename) as fp:
for line_num, l in enumerate(fp):
if line_num > 4:
line = l.split('| ')
if len(line) > 4:
for line_count, line_elem in enumerate(line):
curr_line = line_elem.replace(" ", "")
curr_line = curr_line.replace('|', '')
curr_line = curr_line.strip('\n')
if line_count == 0:
task.append(curr_line)
if line_count == 1:
curr_line = curr_line[:-2]
runtime_ms.append(curr_line)
if line_count == 2:
switches.append(curr_line)
if line_count == 3:
curr_line = curr_line[4:]
curr_line = curr_line[:-2]
average_delay.append(curr_line)
if line_count == 4:
curr_line = curr_line[4:]
curr_line = curr_line[:-2]
max_ms.append(curr_line)
if line_count == 5:
curr_line = curr_line[6:]
curr_line = curr_line[:-1]
max_at.append(curr_line)
# end of for loop
# end of for loop
fp.close()
# end of for loop
if len(task) == len(runtime_ms) == len(switches) == len(average_delay) == len(max_ms) == len(max_at):
df = pd.DataFrame({
header[0]: task,
header[1]: runtime_ms,
header[2]: switches,
header[3]: average_delay,
header[4]: max_ms,
header[5]: max_at
})
return df
else:
print("error")
sys.exit(0)
'''
PerfLog - read log file and create csv
@input: String filename - name of log file
@output: DataFrame df - created dataframe
'''
def PerfLog(filename):
overhead = []
preempted_process = []
preempted_id = []
preempted_unknown = []
scheduled_status = []
preempting_process = []
preempting_id = []
preempting_unknown = []
header = [
'Overhead',
'Preempted process',
'Preempted process id',
'Preempted process priority',
'Scheduled status',
'Preempting process',
'Preempting process id',
'Preempting process priority'
]
with open(filename) as fp:
for line_num, l in enumerate(fp):
if line_num > 10 and len(l) > 3:
line = l.split()
if line[0] == '#':
continue
if len(line) == 7:
for val_count, val in enumerate(line):
if val_count == 0:
overhead.append(val)
elif val_count == 1:
elems = val.split(':')
preempted_process.append(elems[0])
preempted_id.append(elems[1])
elif val_count == 2:
curr_val = val.replace('[', '')
curr_val = curr_val.replace(']', '')
preempted_unknown.append(curr_val)
elif val_count == 3:
scheduled_status.append(val)
elif val_count == 5:
elems = val.split(':')
preempting_process.append(elems[0])
preempting_id.append(elems[1])
elif val_count == 6:
curr_val = val.replace('[', '')
curr_val = curr_val.replace(']', '')
preempting_unknown.append(curr_val)
elif len(line) == 8:
process_name = ''
for val_count, val in enumerate(line):
later_flag = False
if val_count == 0:
overhead.append(val)
elif val_count == 1:
if val == 'rs:main':
process_name += val
else:
elems = val.split(':')
preempted_process.append(elems[0])
preempted_id.append(elems[1])
elif val_count == 2:
if process_name != '':
elems = val.split(':')
process_name += elems[0] + ':'
process_name += elems[1]
preempted_process.append(process_name)
preempted_id.append(elems[2])
else:
curr_val = val.replace('[', '')
curr_val = curr_val.replace(']', '')
preempted_unknown.append(curr_val)
elif val_count == 3:
if process_name != '':
curr_val = val.replace('[', '')
curr_val = curr_val.replace(']', '')
preempted_unknown.append(curr_val)
else:
scheduled_status.append(val)
elif val_count == 4:
if process_name != '':
scheduled_status.append(val)
elif val_count == 5:
if process_name == '':
if val == 'rs:main':
process_name += val
later_flag = True
elif val_count == 6:
if later_flag:
elems = val.split(':')
process_name += elems[0] + ':'
process_name += elems[1]
preempted_process.append(process_name)
preempted_id.append(elems[2])
else:
elems = val.split(':')
preempting_process.append(elems[0])
preempting_id.append(elems[1])
elif val_count == 7:
curr_val = val.replace('[', '')
curr_val = curr_val.replace(']', '')
preempting_unknown.append(curr_val)
# end of for loop
# end of for loop
fp.close()
if len(overhead) == len(preempted_process) == len(preempted_id) == len(preempted_unknown) == len(scheduled_status) == len(preempting_process) == len(preempting_id) == len(preempting_unknown):
df = pd.DataFrame({
header[0]: overhead,
header[1]: preempted_process,
header[2]: preempted_id,
header[3]: preempted_unknown,
header[4]: scheduled_status,
header[5]: preempting_process,
header[6]: preempting_id,
header[7]: preempting_unknown
})
return df
else:
print("error")
sys.exit(0)
'''
LogType - return the log type
@input: String filename - name of the log file to check
@output: String function_name - the type of the log file
'''
def LogType(filename):
function_name = ""
with open(filename) as fp:
for line_num, l in enumerate(fp):
# strace_table identifier
if line_num == 0:
line = l.split()
if (len(line) != 0):
if line[0] == '%':
function_name = "strace_table"
continue
elif line[0] == '#':
function_name = "perf_log"
continue
elif line[0] == '0.000000':
function_name = "strace_timestamp"
continue
if line_num == 1:
line = l.split()
if len(line) != 0:
if line[0] == '-----------------------------------------------------------------------------------------------------------------':
function_name = "perf_latency"
continue
# ftrace identifier
if line_num == 3:
line = l.split()
if (len(line) > 2):
temp = line[2]
if temp == 'function':
function_name = "ftrace_function"
continue
elif temp == 'function_graph':
function_name = "ftrace_graph"
continue
# end of for loop
fp.close()
#end of fp
return function_name
'''
Main - parse input, determine log type, create data frame, create csv
TODO: statistical data analysis using pandas
@input: void
@output: void
'''
def main():
# command line parser
input_folder, search_pid, output_folder = Parser()
# open folder to read file
for filename in glob.glob(os.path.join(input_folder, '*.txt')):
print("read " + filename)
logtype = LogType(filename)
if logtype == 'ftrace_function':
df = FtraceFunction(filename, search_pid)
elif logtype == 'ftrace_graph':
print("warning: ftrace_graph is not currently supported")
continue
elif logtype == 'strace_table':
df = StraceTable(filename)
elif logtype == 'strace_timestamp':
df = StraceTimestamp(filename)
elif logtype == 'perf_log':
df = PerfLog(filename)
elif logtype == 'perf_latency':
df = PerfLatency(filename)
output_filename, output_path = PathFinder(filename, output_folder)
df.to_csv(output_path)
print("created " + output_filename)
# end of for loop
if __name__ == "__main__":
main()