-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRankVar.py
355 lines (288 loc) · 17.7 KB
/
RankVar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import argparse
import pandas as pd
import numpy as np
import os
import joblib
import torch
#define exonic function
def exonic_fun(fun):
if (fun=="nonsynonymous SNV"):
return 0
else:
return 1
def impute_missing(df):
# Set conditions for splicing and loss-of-function (lof) mutations
condition = (
(df['Func.refGene'] == 'splicing') |
(((df['Func.refGene'] == 'exonic') | (df['Func.refGene'] == 'exonic;splicing')) &
((df['ExonicFunc.refGene'] == 'stopgain') |
(df['ExonicFunc.refGene'] == 'stoploss') |
(df['ExonicFunc.refGene'] == 'startloss') |
(df['ExonicFunc.refGene'] == 'frameshift deletion') |
(df['ExonicFunc.refGene'] == 'frameshift insertion')))
)
# Apply conditions to fill columns from 13 to the last column
columns_to_fill =[col for col in df.columns if col.endswith('score')] # Select columns starting from index 13 to the end
for col in columns_to_fill:
df.loc[condition & (df[col] == '.'), col] = 0.8
df.loc[~condition & (df[col] == '.'), col] = 0.0
return df
def add_feature(mydata):
dirname = os.path.dirname(__file__)
#add LOEUF, PLI, and Haploinsufficiency
#add LOEUF & PLI score
LOEUF_PLI=pd.read_csv(os.path.join(dirname, 'database/PLI_LOEUF.bed'),sep='\t')
LOEUF_PLI=LOEUF_PLI[['geneName','_loeuf','_pli']]
LOEUF_PLI.columns=['Gene.refGene','LOEUF','PLI']
# Calculate the rank of each score (1 being the highest)
LOEUF_PLI['LOEUF_rank'] = LOEUF_PLI['LOEUF'].rank(method='min', ascending=False)
# Calculate the rankscore as rank divided by the total number of scores
LOEUF_PLI['LOEUF_rankscore'] = LOEUF_PLI['LOEUF_rank'] / len(LOEUF_PLI)
LOEUF_rankscore=LOEUF_PLI[['Gene.refGene','PLI','LOEUF','LOEUF_rankscore']]
LOEUF_rankscore = LOEUF_rankscore.drop_duplicates(subset=['Gene.refGene'])
# add evolutionary constrainr (fracCdsCons, fracConsPr)
constraint=pd.read_csv(os.path.join(dirname, 'database/constraint.csv'), sep=',')
constraint.columns=['Gene.refGene','fracCdsCons','fracConsPr']
constraint=constraint.drop_duplicates(subset=['Gene.refGene'])
#add omim gene
omim=pd.read_csv(os.path.join(dirname, 'database/genemap2_mim.txt'), sep='\t')
omim.columns=['omim','Gene.refGene','Phenotypes']
#filter with both gene and phenotype
omim_gene=omim[(omim['Gene.refGene'].notna()) & (omim['Phenotypes'].notna())].copy()
omim_gene['omim_score']=1
omim_gene=omim_gene.drop_duplicates(subset=['Gene.refGene'])
#merge data and LOEUF_rankscore
data_LOEUF=pd.merge(mydata, LOEUF_rankscore, on='Gene.refGene',how='left')
data_LOEUF['LOEUF_rankscore'] = data_LOEUF['LOEUF_rankscore'].fillna(0)
data_LOEUF['PLI_score'] = data_LOEUF['PLI'].fillna(0)
# add Haploinsufficiency score
hap_score=pd.read_csv(os.path.join(dirname, 'database/haploinsufficiency.csv'), sep='\t')
hap_score=hap_score[['name','prediction']]
hap_score.columns=['Gene.refGene','Haploinsufficiency_score']
#merge data and haploinsufficiency score
data_Haplo=pd.merge(data_LOEUF, hap_score, on='Gene.refGene',how='left')
#fill nan with '.' (used for the next step to replace)
data_Haplo['Haploinsufficiency_score']=data_Haplo['Haploinsufficiency_score'].fillna(0)
#merge data and constraint score
data_constraint=pd.merge(data_Haplo, constraint, on='Gene.refGene',how='left')
#fill na with 0
data_constraint['fracCdsCons_score'] = data_constraint['fracCdsCons'].fillna(0)
data_constraint['fracConsPr_score'] = data_constraint['fracConsPr'].fillna(0)
# add disease constraint score (pHaplo, pTriplo)
pHaplo=pd.read_csv(os.path.join(dirname,'database/pHaplo.csv'), sep=',')
pHaplo=pHaplo[['Gene','pHaplo','pTriplo']]
pHaplo.columns=['Gene.refGene','pHaplo','pTriplo']
#merge data and disease constraint score
data_pHaplo=pd.merge(data_constraint, pHaplo, on='Gene.refGene',how='left')
#fill na with 0
data_pHaplo['pHaplo_score'] = data_pHaplo['pHaplo'].fillna(0)
data_pHaplo['pTriplo_score'] = data_pHaplo['pTriplo'].fillna(0)
#add RVIS score
RVIS=pd.read_csv(os.path.join(dirname, 'database/RVIS.csv'), sep=',')
RVIS.columns=['Gene.refGene','RVIS','RVIS_rank']
#merge data and RVIS score
data_RVIS=pd.merge(data_pHaplo, RVIS, on='Gene.refGene',how='left')
# Calculate the rankscore as rank divided by the total number of scores
data_RVIS['RVIS_rankscore'] = 1 - ((data_RVIS['RVIS_rank'] - 1) / (data_RVIS['RVIS_rank'].max() - 1))
#fill na with 0
data_RVIS['RVIS_rankscore']=data_RVIS['RVIS_rankscore'].fillna(0)
#add clinvarNum
clinvarNum=pd.read_csv(os.path.join(dirname, 'database/clinvarNum.csv'), sep='\t')
#merge data and clinvarNum #########
data_clinvarNum=pd.merge(data_RVIS, clinvarNum, on='Gene.refGene',how='left')
#file na with 0
data_clinvarNum['clinvarNumB_LB_score']=data_clinvarNum['clinvarNumB_LB_score'].fillna(0.3)
data_clinvarNum['clinvarNumP_LP_score']=data_clinvarNum['clinvarNumP_LP_score'].fillna(0)
#add spliceai score
spliceai=pd.read_csv(os.path.join(dirname, 'database/SpliceAI_score.txt'),sep='\t')
# Merge spliceai with data
data_spliceai = pd.merge(data_clinvarNum, spliceai, on=['Chr','Start'], how='left')
data_spliceai['spliceAImax_score'] = data_spliceai['spliceAImax_score'].fillna(0)
#add mis_ratio
mis_ratio=pd.read_csv(os.path.join(dirname, 'database/mis_ratio_clinvar.txt'),sep='\t')
# Merge mis_ratio with data
data_mis=pd.merge(data_spliceai, mis_ratio, on='Gene.refGene',how='left')
data_mis['mis_ratio_score'] = data_mis['mis_ratio_score'].fillna(0)
#add inheritance pattern
inheritance=pd.read_csv(os.path.join(dirname, 'database/omim_inheriate.csv'),sep=',')
inheritance=inheritance[['Approved Gene Symbol','recessive','dominant']]
inheritance.columns=['Gene.refGene','recessive','dominant']
# Merge inheritance pattern with data
data_inheritance=pd.merge(data_mis,inheritance,on='Gene.refGene',how='left')
data_inheritance['Recessive_score']=data_inheritance['recessive'].fillna(0)
data_inheritance['Dominant_score']=data_inheritance['dominant'].fillna(0)
#merge data and omim gene
data_omim=pd.merge(data_inheritance, omim_gene, on='Gene.refGene',how='left')
#file na with 0
data_omim['omim_score']=data_omim['omim_score'].fillna(0)
#map def
data_omim['exonic_fun']=data_omim['ExonicFunc.refGene'].map(exonic_fun)
return data_omim
# Function to map multiple genes to their corresponding HPO terms
def map_genes_to_hpo(gene_str, gene_hpo_mapping):
if pd.isna(gene_str): # Check if the value is NaN
return [] # Return an empty list for NaN values
genes = gene_str.split('|') # Split the gene names by '|'
hpo_terms = [gene_hpo_mapping.get(gene, []) for gene in genes] # Get HPO terms for each gene
# Flatten the list and remove duplicates
hpo_terms = {hpo for sublist in hpo_terms for hpo in sublist}
return hpo_terms
def predict(df):
dirname = os.path.dirname(__file__)
rf_model_loaded = joblib.load(os.path.join(dirname, 'models/random_forest_model_with_weights.pkl'))
X=torch.tensor(df.values.astype(np.float32), dtype=torch.float32)
rf_predictions = rf_model_loaded.predict_proba(X)[:,1]
return rf_predictions
def extract_info_columns(df):
# Split Otherinfo12 and Otherinfo13 into lists
df['info_keys'] = df['Otherinfo12'].str.split(':')
df['info_values'] = df['Otherinfo13'].str.split(':')
# Extract values for AD and GQ
for col in ['AD', 'GQ']:
df[col] = df.apply(
lambda row: row['info_values'][row['info_keys'].index(col)]
if col in row['info_keys'] else None,
axis=1
)
# Extract AD_alt from AD
df['AD_alt'] = df['AD'].apply(lambda x: x.split(',')[1] if x and ',' in x else None)
# Convert columns to integers
df['GQ'] = pd.to_numeric(df['GQ'], errors='coerce').fillna(0).astype(int)
df['AD_alt'] = pd.to_numeric(df['AD_alt'], errors='coerce').fillna(0).astype(int)
# Drop helper columns
df = df.drop(columns=['info_keys', 'info_values'])
return df
def process_file(annotate_df, gq, ad, gnomad):
dirname = os.path.dirname(__file__)
white_list_path=os.path.join(dirname, 'database/white_list.txt')
white_list = pd.read_csv(white_list_path, sep=",") # Adjust `sep` based on your file format
white_list['variant_id'] = "chr" + white_list['Chr'] + "_" + white_list['Start'].astype(str) + "_" + white_list['Ref'] + "_" + white_list['Alt']
# Load annotation file
# Extract AD, GQ, and AD_alt from Otherinfo12 and Otherinfo13
annotate_df = extract_info_columns(annotate_df)
# Replace '.' in gnomad41_exome_AF_grpmax with 0 and convert to float
annotate_df['gnomad41_exome_AF_grpmax'] = annotate_df['gnomad41_exome_AF_grpmax'].replace('.', 0).astype(float)
# Replace '.' in gnomad41_genome_AF_grpmax with 0 and convert to float
annotate_df['gnomad41_genome_AF_grpmax'] = annotate_df['gnomad41_genome_AF_grpmax'].replace('.', 0).astype(float)
# Create unique variant identifier
annotate_df['variant_id'] = annotate_df['Chr'].astype(str) + "_" + annotate_df['Start'].astype(str) + "_" + annotate_df['Ref'] + "_" + annotate_df['Alt']
# Define the functional filter
functional_terms = ["stopgain", "stoploss", "startloss","frameshift deletion", "frameshift substitution", "frameshift insertion", "nonsynonymous SNV"]
functional_filter = annotate_df['ExonicFunc.refGene'].isin(functional_terms)
splicing_filter = annotate_df['Func.refGene'] == "splicing"
# Separate whitelist and other variants
white_list_variants = annotate_df[
annotate_df['variant_id'].isin(white_list['variant_id']) &
(annotate_df['GQ'] > gq) & (annotate_df['AD_alt'] > ad)
]
functional_variants = annotate_df[
(~annotate_df['variant_id'].isin(white_list['variant_id'])) &
(annotate_df['gnomad41_exome_AF_grpmax'] <= gnomad) & #exome
functional_filter &
(annotate_df['GQ'] > gq) & (annotate_df['AD_alt'] > ad)
]
splicing_variants = annotate_df[
(~annotate_df['variant_id'].isin(white_list['variant_id'])) &
(annotate_df['gnomad41_genome_AF_grpmax'] <= gnomad) & # genome
splicing_filter &
(annotate_df['GQ'] > gq) & (annotate_df['AD_alt'] > ad)
]
# Combine results
filtered_variants = pd.concat([white_list_variants, functional_variants, splicing_variants])
# Remove duplicates based on 'Chr' and 'Start'
filtered_variants = filtered_variants.drop_duplicates(subset=['Chr', 'Start'])
return filtered_variants
def main(annovar, phen2gene, hpo_ids, gq, ad, gnomad, output):
dirname = os.path.dirname(__file__)
print(f"Annotated VCF: {annovar}")
print(f"Phen2Gene Score: {phen2gene}")
print(f"HPO Ids: {hpo_ids}")
print(f"GQ: {gq}")
print(f"AD: {ad}")
print(f"GnomAD: {gnomad}")
gt=pd.read_csv(annovar, sep='\t')
gt=process_file(gt, gq, ad, gnomad)
phen2gene_score=pd.read_csv(phen2gene, sep='\t')
phen2gene_score=phen2gene_score[['Gene','Score','Rank']]
#merge phen2gene score to annotated txt
variants_gt=pd.merge(gt, phen2gene_score, left_on='Gene.refGene', right_on='Gene', how='left')
#fill nan with 0
variants_gt['phen2gene_score'] = variants_gt['Score'].fillna(0)
variants_gt['phen2gene_score_rank'] = variants_gt['Rank'].fillna(20000)
# Step 2: Normalize by the total number of genes (20,000)
total_genes = 20000
variants_gt['phen2gene_rankscore'] = -np.log10(variants_gt['phen2gene_score_rank']/total_genes)
#select columns from annotated data
info_columns=['Chr', 'Start', 'End', 'Ref', 'Alt', 'Func.refGene', 'Gene.refGene', 'ExonicFunc.refGene',
'gnomad41_exome_AF_grpmax', 'gnomad41_genome_AF_grpmax', 'phen2gene_score']
rankscore_columns = [col for col in variants_gt.columns if col.endswith('rankscore') or col.endswith('QTL_gene')]
select_columns=info_columns+rankscore_columns
variants_data=variants_gt[select_columns].copy()
#add feature
variants_final_omim=add_feature(variants_data)
variants_final_omim=variants_final_omim.drop(['PLI', 'LOEUF', 'fracCdsCons', 'fracConsPr', 'pHaplo', 'pTriplo', 'RVIS', 'RVIS_rank', 'omim', 'Phenotypes', 'recessive', 'dominant'], axis=1)
column_info_from_anno=variants_final_omim.columns.tolist()
variants_final_omim=impute_missing(variants_final_omim)
#gene mapped hpo terms
gene_to_pheno=pd.read_csv(os.path.join(dirname,'database/genes_to_phenotype.txt'), sep='\t')
# Drop duplicates based on 'gene_symbol' and 'hpo_id', keeping the first occurrence
gene_to_pheno = gene_to_pheno.drop_duplicates(subset=['gene_symbol', 'hpo_id'], keep='first')
gene_to_pheno_df=pd.DataFrame(gene_to_pheno.groupby('gene_symbol')['hpo_id'].apply(list)).reset_index()
gene_to_pheno_df.columns=['Gene.refGene','hpo']
# Aggregate HPO terms for each gene as lists
#gene_to_pheno with information for gene and mapped hpo
gene_hpo_mapping = gene_to_pheno.groupby('gene_symbol')['hpo_id'].apply(list).to_dict()
# Iterate through each gene column in the second DataFrame and create corresponding HPO columns
qtl_df = pd.DataFrame(index=variants_final_omim.index)
for col in variants_final_omim.columns:
if col.endswith('QTL_gene'): # Check if it's a gene-related column
hpo_col = col.replace('QTL_gene', 'QTL_hpo') # New column name for HPO
qtl_df[hpo_col]=pd.Series(variants_final_omim[col].apply(map_genes_to_hpo, gene_hpo_mapping=gene_hpo_mapping)) # Correctly apply the function
variants_final_omim=pd.concat([variants_final_omim, qtl_df],axis=1)
variants_final_omim=variants_final_omim.drop(columns=[col for col in variants_final_omim.columns if col.endswith('QTL_gene')])
with open(hpo_ids, 'r') as f:
hpo_ids=set(f.read().splitlines())
# Create a temporary DataFrame to store new columns
new_columns = pd.DataFrame(index=variants_final_omim.index)
# Loop through the '_hpo' columns and calculate the corresponding '_score' column
for col in variants_final_omim.columns:
if col.endswith('_hpo'): # Check if it's an '_hpo' column
count_col = col.replace('_hpo', '_score') # New column name for count
# Calculate the number of coinciding HPO terms
new_columns[count_col] = variants_final_omim.apply(
lambda row: len(hpo_ids.intersection(row[col])), axis=1
)
# Concatenate the new columns DataFrame to the original DataFrame
variants_final_omim = pd.concat([variants_final_omim, new_columns], axis=1)
# Step 1: Identify columns ending with 'eQTL_score' and 'sQTL_score'
eQTL_columns = [col for col in variants_final_omim.columns if col.endswith('eQTL_score')]
sQTL_columns = [col for col in variants_final_omim.columns if col.endswith('sQTL_score')]
eQTL_hpo_columns = [col for col in variants_final_omim.columns if col.endswith('eQTL_hpo')]
sQTL_hpo_columns = [col for col in variants_final_omim.columns if col.endswith('sQTL_hpo')]
# Step 2: Combine the values (sum across rows) for the identified columns
variants_final_omim['eQTL_tissue_score'] = variants_final_omim[eQTL_columns].sum(axis=1)
variants_final_omim['sQTL_tissue_score'] = variants_final_omim[sQTL_columns].sum(axis=1)
variants_final_omim=variants_final_omim.drop(columns=eQTL_columns + sQTL_columns+eQTL_hpo_columns+sQTL_hpo_columns)
variants_final_omim = variants_final_omim[~variants_final_omim['Gene.refGene'].str.startswith(('ZNF', 'MUC', 'HLA', 'FAM', 'LOC'), na=False)]
columns=['MetaRNN_rankscore', 'PLI_score', 'phen2gene_rankscore', 'omim_score', 'LOEUF_rankscore', 'exonic_fun', 'SIFT_converted_rankscore', 'DANN_rankscore', 'Haploinsufficiency_score', 'fracCdsCons_score', 'AlphaMissense_rankscore', 'clinvarNumB_LB_score', 'spliceAImax_score', 'eQTL_tissue_score', 'sQTL_tissue_score', 'RVIS_rankscore', 'clinvarNumP_LP_score', 'FATHMM_converted_rankscore', 'Recessive_score', 'Dominant_score']
variants_final_omim_select=variants_final_omim[columns]
variants_final_omim_info=variants_final_omim[info_columns].copy()
predicitions=predict(variants_final_omim_select)
variants_final_omim_info['pathogenecity_score']=predicitions
variants_final_omim_info=variants_final_omim_info.sort_values('pathogenecity_score', ascending=False)
variants_final_omim_info['rank']=variants_final_omim_info['pathogenecity_score'].rank(ascending=False, method='dense')
variants_final_omim_info.to_csv(os.path.join(output, 'rank_var.tsv'), sep='\t', index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Parse arguments for genetic analysis software.")
parser.add_argument("--annovar", type=str, help="Path to the annotated VCF file", required=True)
parser.add_argument("--output", type=str, help="Path to the output folder", required=True)
parser.add_argument("--hpo_ids", type=str, help="Path to the HPO id file", required=True)
parser.add_argument("--phen2gene", type=str, help="Path to the Phen2Gene score file", required=True)
parser.add_argument("--gq", type=float, help="Genotype Quality threshold (float)", default=20)
parser.add_argument("--ad", type=float, help="Allelic Depth threshold (float)", default=15)
parser.add_argument("--gnomad", type=float, help="GnomAD frequency threshold (float)", default=0.0001)
args = parser.parse_args()
if not args.output:
args.output=os.getcwd()
os.makedirs(args.output, exist_ok=True)
main(args.annovar, args.phen2gene, args.hpo_ids, args.gq, args.ad, args.gnomad, args.output)