-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN.py
152 lines (132 loc) · 5.41 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys
import numpy as np
import os
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from data import *
import tensorflow as tf
import keras.backend as K
import keras
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
#! Model import
from model_VGG3 import define_model
from model_VGG3 import define_model_adam
from model_VGG3 import define_model_lr
from model_VGG3 import define_model_dropout
from model_VGG3 import define_model_dropout_batchnorm
#! Hyper parameters
no_epochs = 100
batch_s = 64
experiment_name = "VGG3_"
data_folder = os.path.join(os.path.abspath(__file__),'results')
# plot diagnostic learning curves
def summarize_diagnostics(history, name=""):
#! plot loss
plt.subplot(211)
plt.title('Cross Entropy Loss')
plt.plot(history.history['loss'], color='blue', label='train')
plt.plot(history.history['val_loss'], color='orange', label='test')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train', 'test'], loc='upper right')
#! plot accuracy
plt.subplot(212)
plt.title('Classification Accuracy')
plt.plot(history.history['accuracy'], color='blue', label='train')
plt.plot(history.history['val_accuracy'], color='orange', label='test')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.tight_layout()
# save plot to file
filename = experiment_name
plt.savefig("results/" + filename + name + 'plot.pdf')
plt.close()
#! create the confusion matrix
def create_confusion_matrix(model, testX ,testY, name):
truth = testY.argmax(axis=1)
predict = model.predict(testX).argmax(axis=1)
matrix = confusion_matrix(truth, predict)
matrix = np.array2string(matrix, precision = 3, separator = ', ')
matrix = matrix.replace(']',';')
matrix = matrix.replace('[','')
matrix = matrix.replace(';,',';')
matrix = matrix.replace(';;',';')
print(matrix, file=open("results/" + experiment_name + name + "confusion_matrix.txt", "w"))
#! run the test for evaluating the model based on depth with early stopping
def run_test_depth():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# define model
model = define_model_dropout_batchnorm()
# fit model
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience = 10)
history = model.fit(trainX, trainY, epochs=no_epochs, batch_size=batch_s, validation_data=(testX, testY), verbose=1, callbacks=[es])
# evaluate model
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
#compute the confusion matrix
name = "dropout3_es_batchnorm_adam_data"
create_confusion_matrix(model, testX, testY, name)
# learning curves
summarize_diagnostics(history, name)
#! Run test with dataugmentation
def run_test_aug():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# define model
model = define_model_dropout_batchnorm()
# fit model
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience = 10)
datagen = ImageDataGenerator(horizontal_flip=True)
train = datagen.flow(trainX, trainY, batch_size=64)
history = model.fit(x = train, batch_size= batch_s, epochs=no_epochs, validation_data=(testX, testY), verbose=1, callbacks=[es])
# evaluate model
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
#compute the confusion matrix
name = "dropout3_es_batchnorm_sgd_data"
create_confusion_matrix(model, testX, testY, name)
# learning curves
summarize_diagnostics(history, name)
#! run the test for evaluating the model based on LR
def run_test_lr():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# define models with different lr
model1 = define_model_lr(0.001)
model2 = define_model_lr(0.01)
model3 = define_model_lr(0.1)
# fit model
history1 = model1.fit(trainX, trainY, epochs=no_epochs, batch_size=batch_s, validation_data=(testX, testY), verbose=1)
history2 = model2.fit(trainX, trainY, epochs=no_epochs, batch_size=batch_s, validation_data=(testX, testY), verbose=1)
history3 = model3.fit(trainX, trainY, epochs=no_epochs, batch_size=batch_s, validation_data=(testX, testY), verbose=1)
# evaluate model
_, acc = model1.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
_, acc = model2.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
_, acc = model3.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
# learning curves
summarize_diagnostics(history1,"lr=0.001")
summarize_diagnostics(history2,"lr=0.01")
summarize_diagnostics(history3,"lr=0.1")
# entry point, run the test
run_test_aug()