-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
28 lines (22 loc) · 858 Bytes
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
from keras.models import load_model
from ela import convert_to_ela_image
def prepare_image(fname):
image_size = (128, 128)
return (
np.array(convert_to_ela_image(fname[0], 90).resize(image_size)).flatten()
/ 255.0
) # return ela_image as a numpy array
def predict_result(fname):
model = load_model("trained_model.h5") # load the trained model
class_names = ["Forged", "Authentic"] # classification outputs
test_image = prepare_image(fname)
test_image = test_image.reshape(-1, 128, 128, 3)
y_pred = model.predict(test_image)
y_pred_class = round(y_pred[0][0])
prediction = class_names[y_pred_class]
if y_pred <= 0.5:
confidence = f"{(1-(y_pred[0][0])) * 100:0.2f}"
else:
confidence = f"{(y_pred[0][0]) * 100:0.2f}"
return (prediction, confidence)