-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllava_api.py
132 lines (117 loc) · 4.95 KB
/
llava_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
import torch
import av
import numpy as np
from io import BytesIO
from pyngrok import ngrok
app = FastAPI()
# Quantization configuration for 4-bit quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
# Load the model and processor
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
"llava-hf/LLaVA-NeXT-Video-7B-hf",
quantization_config=quantization_config,
device_map='auto'
)
def read_video_pyav(container, indices):
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
@app.post("/analyze_video/")
async def analyze_video(file: UploadFile = File(...)):
try:
# Read the uploaded video file
video_bytes = await file.read()
video_io = BytesIO(video_bytes)
container = av.open(video_io)
# Extract frames from the video
total_frames = container.streams.video[0].frames
nb_frames = 8
indices = np.arange(0, total_frames, total_frames / nb_frames).astype(int)
clip = read_video_pyav(container, indices)
# Create separate prompts for each category
facial_expression_prompt = [
{
"role": "user",
"content": [
{"type": "text", "text": "Analyze only the facial expressions of the client in this \"simulation date\" video. Focus on emotions, engagement level, and reactions."},
{"type": "video"},
],
},
]
posture_prompt = [
{
"role": "user",
"content": [
{"type": "text", "text": "Analyze only the posture of the client in this \"simulation date\" video. Provide insights into their body language and confidence."},
{"type": "video"},
],
},
]
interaction_dynamics_prompt = [
{
"role": "user",
"content": [
{"type": "text", "text": "Analyze the interaction dynamics between the two clients in the \"simulation date\" video. Focus on engagement, interest, and social cues."},
{"type": "video"},
],
},
]
tips_prompt = [
{
"role": "user",
"content": [
{"type": "text", "text": "Based on the facial expressions, posture, and interaction dynamics, recommend personalized exercises or tips for the clients in the \"simulation date\" video."},
{"type": "video"},
],
},
]
# Process the input and generate output for each category
prompts = [facial_expression_prompt, posture_prompt, interaction_dynamics_prompt, tips_prompt]
results = {}
for i, category_prompt in enumerate(prompts):
prompt = processor.apply_chat_template(category_prompt, add_generation_prompt=True)
inputs = processor([prompt], videos=[clip], padding=True, return_tensors="pt").to(model.device)
generate_kwargs = {"max_new_tokens": 200, "do_sample": True, "top_p": 0.9}
output = model.generate(**inputs, **generate_kwargs)
generated_text = processor.batch_decode(output, skip_special_tokens=True)
try:
generated_text = generated_text[0].split("ASSISTANT: ")[1]
except:
try:
generated_text = generated_text[0].split("ASSISTANT:")[1]
except:
pass
# Assigning results based on iteration (order: facial_expressions, posture, interaction_dynamics, tips)
if i == 0:
results["facial_expressions"] = generated_text
elif i == 1:
results["posture"] = generated_text
elif i == 2:
results["interaction_dynamics"] = generated_text
elif i == 3:
results["tips"] = generated_text
return JSONResponse(content=results)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
if __name__ == "__main__":
# Run the FastAPI app with Uvicorn
import uvicorn
# Start ngrok tunnel
public_url = ngrok.connect(8000)
print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:8000\"")
# Run the FastAPI server
uvicorn.run(app, host="0.0.0.0", port=8000)